Rabu, 24 Oktober 2018

KBP Food Lipids

Food Lipids


Lipids

Ÿ"Lipids consist of a board group of  compounds that are generally soluble in  organic 
solvents but only sparingly soluble in  water…." "…Glycerol esters of fatty acids,  which  
make up 99% of the lipids of plant and  animal origin have traditionally been called  fats  
and oils"

Lipids are non-polar (hydrophobic)  compounds, soluble in organic solvents.

Fatty acids consist of a hydrocarbon chain  with a carboxylic acid at one end

                            Non-Polar                   Polar


Saturated Fatty Acids


Systematic name Trivial name Shorthand  designation Molecular  wt.            
butanoic butyric 4:00 88,1
pentanoic valeric 5:00
hexanoic caproic 6:00 116,1
octanoic caprylic 8:00 144,2
nonanoic pelargonic 9:00 158,2
decanoic capric 10:00 172,3
dodecanoic lauric 12:00 200,3
tetradecanoic myristic 14:00 228,4
hexadecanoic palmitic 16:00 256,4
heptadecanoic margaric  (daturic) 17:00 270,4
octadecanoic stearic 18:00 284,4
eicosanoic arachidic 20:00 312,5
docosanoic behenic 22:00 340,5


Mono-Unsaturated Fatty Acids


Systematic name Trivial name Shorthand  designation Molecular  wt.
cis-9-tetradecenoic myristoleic 14:1(n-5) 226.4
cis-9-hexadecenoic palmitoleic 16:1(n-7) 254.4
cis-9-octadecenoic oleic 18:1(n-9) 282.4
tr-9-octadecenoic elaidic tr18:1(n-9) 282.4
cis-11-octadecenoic vaccenic (asclepic) 18:1(n-7) 282.4
cis-11-eicosenoic gondoic 20:1(n-9) 310.5
cis-13-docosenoic erucic 22:1(n-9) 338.6






Systematic name Trivial name Shorthand  designation Molecular  wt.
9,12-octadecadienoic linoleic 18:2(n-6) 280.4
6,9,12-octadecatrienoic γ-linolenic 18:3(n-6) 278.4
9,12,15-octadecatrienoic α-linolenic 18:3(n-3) 278.4
6,9,12,15-octadecatetraenoic stearidonic 18:4(n-3) 276.4
5,8,11,14-eicosatetraenoic arachidonic 20:4(n-6) 304.5
5,8,11,14,17-eicosapentaenoic EPA 20:5(n-3) 302.5
4,7,10,13,16,19-docosahexaenoic DHA 22:6(n-3) 328.6





 Phospholipids

ŸPi is in turn esterified to  OH of a polar head  group (X): e.g., serine,  choline,ethanolamine,  glycerol, orinositol. 

ŸThe 2 fatty acids tendto  be non-identical. They  may differ in length  and/or the  presence/absence of  doublebonds. 




Sphingolipids
  • ŸSphingolipids are  derivatives of the lipid  sphingosine, which has long hydrocarbon tail, and a  polar domain that includes  an amino group.
  • ŸThe amino group of  sphingosine can form an  amide bond with a fatty acid  carboxyl, to yield a  ceramide.


Sphingomyelin

Ÿ     Sphingomyelin, a ceramide  with a phosphocholine or  phosphethanolamine head  group, is a common  constituent of plasma  membranes
Ÿ   
A cerebroside is a sphingolipid (ceramide)with 
amonosaccharide  such as  glucose or galactose as   
polar head group.

 Attributes of Food Lipids
 
ŸThree major functions in foods
Energy and health
Influence food flavors
Ÿfree fatty acids contribute flavors
Ÿlipids act as solvents for carrying hydrophobic  
flavors and aromas  (and nutrients)
Texture
ŸSolid vs liquid
ŸEmulsions
Attributes determined by types and positions of  fatty acids on glycerol backbone


Plant  Triglycerides




Ÿ

Coconut, palm oil richer in 8:0-16:0
 
 Cocoa butter 
~ equal 16:0, 18:0, 18:1 
sn-2 primarily unsat’d (U)

sn-1,3 mostly sat’d (S)




 Coconut oil

80% of triacylglycerols are trisaturated

ŸLauric at sn-2

ŸOctanoic at sn-3

ŸMyristic or palmitic at sn-1



 
ŸPeanut Oil

 
–             
  ~40% oleic; 40%linoleic

   –sn-2 largely unsat’d


  Soybean oil similar


Olive Oil

    –~75% oleic

    –sn-2 99% unsat’d

    –homogeneous

       

 Animal  Triglycerides

Ÿ        Beef Fat (tallow)   
     

       – ~ equal 16:0, 18:0, 18:1
      – sn-1,2,3 sat’d (S) &  
       unsat’d (U)
  
       –Pig fat (lard) similar


  









Cocoa Butter vs  Animal Fat

ŸCompare cocoa butter vs tallow (beef fat)Ÿ 
fatty acid composition quite similar roughly equal C16:0, C18:0, C18:1
                                 cocoa butter                                        tallow
 
Cocoa butter homogeneous:  melts sharply at body temp;  Tallow heterogeneous:   
solid/liquid over wide temp range



 Animal  Triglycerides
bovine milk fat
cod oil


ŸMilk Fat - Large number of short-chain fatty acids      Marine Oils

–  affects cheese flavor                                                 – Long-chain unsaturated  fatty acids
–  causes milk rancidity



 Summary of Fatty Acid Profiles
ŸPlant fats/oils:

sn-2 largely unsaturated fatty acid (C18:1 & C18:2)

some plant oils contain high unsaturated fatty acid contents  (peanut, soybean, olive, Canola)

other plant oils significantly saturated (cocoa butter)

coconut and palm oil primarily saturated— rich in C8:0-  C16:0

ŸAnimal fats/oils:

broader range of fatty acids/triglycerides found  
  •       milk fat (short chains) vs fish oils (long, polyunsat’d)
sn-2 often saturated, greater variation in positions
 


 
Properties
Crystallization

ŸCrystallization/Melting is balance
 
entropic considerations
  • favor increased molecular motion
and

attractive intermolecular  interactions

  • favor packing molecules close  together


Melt (liquid)     
                                                                     crystal (solid)


Melting Point

ŸLonger chain fatty acids pack better than shorter  chains

M.P.long >  M.P.short

ŸSaturated fatty acids pack better than unsaturated
         – M.Psat’d >  M.P.unsat’d






Ÿ 
Trans fatty acids pack better than cis
M.Ptrans >  M.P.cis 
hydrogenation increases M.P.
 



Melting Point Trends

Fatty A cid Comm on N ame M.P
8:00 Caprylic acid 16ºC
16:00 Palmitic acid 63ºC
18:00 Stearic acid 69ºC
20:00 Arachidic acid 75ºC
18:1Δ9 (cis) Oleic acid 13ºC
18:2Δ9,12 (ci s) Linoleic acid -5ºC
18:3Δ9,12,15 (ci s) Linolenic acid -11ºC
18:1Δ9 (trans) Elaidic acid 46ºC
18:2Δ9,12 (trans) Linolelaidic acid 28ºC


Surfactants (Emulsifiers)

ŸSurfactants are molecules that lower the  surface tension

Part of molecule interacts favorably with water

ŸPolar or charged (hydrophilic)

Part of molecule interacts unfavorably with  water

ŸHydrophobic
Amphiphilic


Lipid Surfactants

ŸFatty Acids
Monoglycerides and Diglycerides 
Phospholipids
Synthetic Emulsifiers
Tweens
 













Surfactants

ŸMediates interactions between hydrophobic  and hydrophilic phases
Hydrophilic Head


Hydrophobic Interior




Hydrophilic Head




Emulsion Breakdown:  Creaming

ŸDensity differences between droplets and  continuous phase cause droplets to rise or fall
In oil-in-water emulsions, droplets typically rise
ŸCreaming rate depends on
droplet size
Ÿdecrease drop size  (e.g. homogenized milk)
viscosity of continuous phase
Ÿadd macromolecules (termed stabilizers) to increase  viscosity





Health-Related Quality of Life of Patients with HPV-Related Cancers in Indonesia Didik Setiawan, PhD1,2,*, Arrum Dusafitri, BPharm2, Gi...