Senin, 31 Desember 2018

Mengenal Virus MERS

Mengenal Virus MERS


virus mers CoV adalah

Setelah dunia bermasalah dengan virus SARS, Flu Burung, dan Swine Flue, sekarang dunia digemparkan dengan adanya pandemi baru yakni Virus Mers yang banyak ditemukan di Kawasan Teluk, Timur Tengah. Untuk pertama kalinya virus ini ditemukan oleh ahli Virologi, Dr. Ali Moh. Zaki pada seorang pasien pria yang berusia 60 tahun di Rumah Sakit Dr. Fakeeh, Jeddah, Saudia Arabia tanggal 20 September 2012 dan kemudian kasus kedua ditemukan di Qatar pada seorang pria yang berusia 49 tahun pada tanggal 23 September 2012 dan sejak saat itu ditemukan lebih dari 80 kasus yang berakibat fatal. Pada akhirnya terjadilah wabah MERS.


Apa Itu Virus Mers?
Virus Mers adalah sejenis virus yang masuk dalam kelompok betacoronavirus saat diidentifikasi pada bulan November 2012 ternyata memiliki hubungan kekerabatan dengan coronavirus yang terdapat pada kelelawar yakni jenis HKU4 dan HKU5. Pada akhirnya virus tersebut diberi istilah "hCoV-EMC" yang merupakan singkatan dari Human Coronavirus Erasmus Medical Center setelah diidentifikasi oleh Dr. Ron di Erasmus Medical Center. Namun pada bulan Mei 2013 istilahnya diubah menjadi Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV).

Evolusi Virus Baru
Seperti kasus sebelumnya yang terjadi pada kasus Flu Burung dan Flu Babi yang mana virus berevolusi dari burung yang saya ulas di artikel "Mekanisme Infeksi Virus H1N1", maka virus MERS ini awal mula secara genetika berkerabat dengan Coronavirus pada kelelawar dari genus Tylonycteris yakni CoV HKU4 (Ty-BatCoV HKU4) dan dari kelelawar genus Pipistrellus CoV HKU5 (Pi-BatCoV HKU5) yang ada di Hongkong. Namun ada perbedaan pada reseptor yang dikenalinya dimana MERS-CoV berevolusi dengan mengubah protein pengikat reseptornya untuk mengenali dipeptidyl peptidase 4(DPP4) sebagai reseptor fungsional. Reseptor tersebut secara spesifik dapat dijumpai di sel mamalia seperti kelelawar, unta, primata, kelinci, babi, dan domba (Gambar 1). Disamping itu karakteristik protein DPP4 juga dapat ditemukan di kucing, tikus, hamster, anjing, dan musang.

virus MERS, penyebaran MERS, unta MERS
Gambar 1.Diagram skematis potensial transmisi virus MERS Co-V (Raj et al., 2014). 


Taksonomi
MERS merupakan Genus dari Coronavirus yang masuk dalam ordo Nidovirales, famili Coronaviridae dan subfamili Coronavirinae, yang mana terdiri dari empat genera yakni Alphacoronavirus, Betacoronavirus, Deltacoronavirus dan Gammacoronavirus. Taksonomi tersebut didasarkan pada hubungan antigen dan sekuensing gen. Sementara untuk coronavirus pada manusia masuk dalam dua genera: Alphacoronavirus dan Betacoronavirus. HCoV-229E dan HCoV-NL63 masuk dalam genera Alphacoronavirus. Sementara genera Betacoronavirus terdiri dari empat jalur yakni CoV, HCoV-OC43 dan HCoV-HKU1, dan BtCoV.


Genom dan Protein MERS-CoV
Strukktur genom MERS-CoV terdiri dari 30119 nukleotida yang memiliki kemiripan dengan coronaviruses yang lainnya. Materi genetiknya berupa RNA yang memiliki penambahan gugus poli-A pada ujung 3’ mRNA (polyadenylation) dengan 2/3 genomnya mengkode protein non-struktural (NSPs = Non-Structural Proteins) yang terlibat dalam replikasi. Adapun struktur genom secara lengkap dapat diamati di Gambar 2.


genom MERS, genom virus, genom SARS, genom Coronavirus
Gambar 2. Klik gambar untuk memperbesar! Gambar tersebut merupakan perbandingan 
genom dari MERS-CoV, BatCoV-HKU4, dan SARS-CoV (Yuan & Wenjie, 2013).


Mekanisme Infeksi
MERS merupakan virus RNA dengan single strand alias rantai tunggal yang dilindungi oleh pelindung khusus dengan protein S sebagai pengikatnya untuk mengenali reseptor inangya. Berdasarkan Gambar 3, protein S dari virus MERS berikatan pada reseptor DPP4 di membram plasma. Ketika reseptor tersebut mengenali inangnya, maka virus MERS akan dengan mudahnya mengalami endositosis ke dalam sel sehingga materi genetik yang berupa RNA akan ditranskripsi dan ditranslasi untuk menghasilkan genom RNA baru dan protein struktural dari virus tersebut dan selanjutnya akan dirakit (assembly) untuk membentuk virus baru (virions). Virion tersebut akhirnya dilepaskan dengan bantuan vesikel secara eksositosis dan virus akan menyerang sel inang baru untuk proses reproduksi baru.

mekanisme infeksi, mekanisme infeksi mers, infeksi mers, replikasi mers
Gambar 3. Klik gambar untuk memperbesar! Mekanisme infeksi MERS-CoV dalam sel inang (Lu et al., 2013).

Pengertian dan Jenis Marka (Penanda) Molekuler

Pengertian dan Jenis Marka (Penanda) Molekuler


Menurut  Semagn et al (2006), definisi marka (penanda) molekuler adalah sekuen DNA yang dapat diidentifikasi, dan terdapat pada lokasi tertent pada genom, dan dapat diwariskan dari satu generasi ke generasi berikutnya. Ibaratnya sebuah barcode, keberadaan marka molekular tersebut secara prinsip memiliki perbedaan, sehingga untuk memilih dan pengaplikasian harus dengan hati-hati. Definisikan marka genetik merupakan gen yang terekspresi dan membentuk fenotip, biasanya mudah dibedakan, digunakan untuk identifikasi individu atau sel yang membawanya, atau sebagai probe untuk menandai inti, kromosom, atau lokus. 

Kemudian Recee and Haribabu (2007) berpendapat bahwa marka molekuler adalah DNA yang teridentifikasi, ditemukan pada lokasi tertentu pada genom, diwariskan dari generasi ke generasi berukutnya dengan mengikuti  hukum pewarisan sifat. Sehingga dari beberapa pengertian tersebut dapat disimpulakan pengertian Marker molekular merupakan sekuen DNA yang teridentifikasi pada genom dan dapat diwariskan dari satu generasi ke generasi berikutnya dengan mengikuti hukum pewarisan sifat.

Marker molekular dapat dinggap sebagai bagian yang tidak mudah mengalami perubahan akibat aktifitas genetik seperti mutasi dan insersi atau proses seleksi alam. Sehingga pada proses evolusi daerah tersebutlah yang tetap akan diwariskan oleh ancestor (leluhur) kepada keturunan berikutnya.  Marka molekular memiliki beberapa kelebihan antara lain:

  1. Marka molekular tidak dipengaruhi oleh faktor lingkungan yang sangat bervariasi sehingga marka molekular merupakan daerah yang conserve
  2. Marka molekular terdapat pada semua genom, sehingga banyak ditemukan pada semua genom individu yang akan dilihat polimorfismenya. 
  3. Marka molekular sangat conserve sehingga perubahan yang terjadi sangatlah sedikit, maka dapat dijadikan penanda bahwa organisme tersebut masih dalam satu kelompok atau tidak dilihat dari marke tersebut. 

Marker molekular pada aplikasinya sangatlah beragam, sehingga untuk memilih Marka molekular harus disesuaikan dengan organisme yang akan diteliti dan pada DNA mana yang akan dianalisis sekuennya. Marker molekular dapat diaplikasikan pada beberapa genom DNA yang terdapat pada nukleus, mitokondria, kloroplas, atau organel lain (Recee and Haribabu, 2007).

Menurut Varma (2011) pemilihan marka berdasarkan atas mode pewarisan, sensitivitas, perbandingan terhadap suatu masalah, dan reprodusibilitas. Marka molekular dibagi atas marka dominan dan marka kodominan. Marka ko-dominan adalah salah satu marka yang dapat mengidentifikasi semua alel yang ada pada suatu lokus tertentu, sedangkan marker dominan hanya mengungkap alel dominan tunggal saja tetapi pada lokus yang sama. Data ko-dominan umumnya lebih tepat daripada data dominan tetapi marka dominan biasanya membutuhkan waktu lebih cepat dan lebih mudah mendapatkan data.  Macam-macam  marka (penanda) molekular yang sering digunakan yakni marka mtDNA, single nucleotide polymorphisms (SNPs), allozymerestriction fragment length polymorphisms (RFLPs), microsatellite atau simple sequence repeats (SSRs), random amplified polimorphic DNA (RAPD), dan amplified fragment length polymorphisms (AFLPs). Berikut adalah penjelasan jenis marka (penanda) molekuler beserta penjelasan:

1. Marka Molekuler mtDNA
Polimorfisme DNA mitokondria (mtDNA) digunakan dalam filogenetik dan analisis diversitas genetik. Haploid mtDNA dibawakan oleh mitokondria di dalam sitoplasma, pewarisan maternal dan laju mutasi yang tinggi. Polimorfisme dalam urutan daerah hipervariabel dari D-loop atau kontrol daerah mtDNA telah memberikan kontribusi besar terhadap identifikasi nenek moyang liar dari spesies domestik, pembentukan pola geografis keanekaragaman genetik, dan pemahaman domestikasi ternak. 

Adanya mtDNA dapat menggambarkan bahwa perkembangan sekuens DNA yang informatif mampu menjawab level populasi. Marka ini digunakan untuk mempelajari filogeografi intraspesifik yang fokus pada pola hasil variasi dari salah satu sejarah atau barrier untuk aliran gen dalam populasi, yang diinisialkan dengan penggunaan mtDNA. Sekuens mtDNA dibatasi oleh mtDNA genom yang terdiri dari pewarisan lokus uniparental tunggal. Perluasan penggunaan marker mtDNA (Gambar 1) yaitu marka ribosomal DNA (12S rDNA dan 16S rDNA), marka pengkode gen protein (antara lain: cytochrome bcytochrome oksidase subunit I dan II, NADH dehydrogenase subunit), dan kontrol region marker.

Gambar 1. Marka molekuler mtDNA.

2. Marka Molekuler Single Nucleotide Polymorphisms (SNPs)
Marka ini merupakan mutasi titik dimana satu nukleotida disubstitusi oleh nukleotida lain pada lokus tertentu. SNP merupakan tipe yang lebih umum untuk membedakan sekuen diantara alel, kodominan di alam, dan menandakan marka polimorfik dari suatu sumber yang tidak pernah habis untuk penggunannya pada resolusi tinggi dalam pemetaan genetik suatu karakter (Gambar 2). Deteksi marka SNP bersifat kodominan, hal ini didasarkan pada amplifikasi primer yang memiliki basis pada informasi sekuen untuk gen yang lebih spesifik. Kelebihan dari teknik SNP adalah lebih mudah diterapkan jika dibandingkan dengan teknik SSR maupun AFLP. Selain itu kelebihannya adalah lebih berguna pada beberapa lokus SNP yang memiliki posisi yang sangat berdekatan yang dapat mendefinisikan adanya haplotipe dan pengembangan haplotype tags. Kekurangan marka molekuler SNP adalah membutuhkan informasi sekuen genetik untuk suatu gen yang menjadi target analisis serta membutuhkan pengadaan alat dan bahan yang membutuhkan biaya tinggi (Azrai, 2005).

Gambar 2. Informasi urutan DNA untuk identifikasi SNP pada tingkat variasi individu dengan spesies yang sama. 


3. Marka Molekuler Restriction Fragment Length Polymorphisms (RFLPs)
Marka (penanda) molekuler RFLP (Restriction Fragment Length Polymorphism) adalah marka (penanda) ko-dominan, sangat dapat dipercaya dalam analisis linkage dan breeding serta dapat ditentukan dengan mudah jika karakter terdapat dalam bentuk homozigot atau heterozigot. Keunggulan dari marka RFLP (Gambar 3) adalah konsistensi yang tinggi, sifat pewarisan ko-dominan, dapat diulang antar laboratorium, memberikan marka pada lokus yang spesifik, tidak memerlukan informasi sekuen, dan relatife mudah dilakukan scoring karena adanya perbedaan yang cukup besar antar fragmen. Akan tetapi penerapan RFLP memerlukan DNA dalam jumlah yang cukup besar untuk proses pemotongan dengan enzim restriksi. Selain itu, penggunaan digunakan isotop radioaktif dengan harga yang relatif mahal serta berbahaya, dan waktu yang diperlukan untuk pengujian juga cukup lama (Varma, 2011).

Gambar 3. Proses pemotongan urutan DNA dengan enzim restriksi berdasarkan marka molekuler RFLP. 


Keterbatasan RFLP dikarenakan beberapa faktor (1) pada beberapa spesies tingkat polimorfisme DNA-nya sangat rendah, (2) menyita banyak tenaga dan waktu, (3) kuantitas dan kualitas DNA yang diperlukan sangat tinggi, (4) prosedur hibridisasinya rumit sehingga menyulitkan otomatisasi, dan (5) membutuhkan koleksi probe untuk spesies yang belum pernah dieksplorasi sebelumnya.

4. Marka Molekuler Mikrosatelit atau Simple Sequence Repeats (SSRs)
Marka mikrosatelit yang juga dikenal dengan Simple Sequence Repeats (SSRs) adalah kelas terkecil dari sekuen berulang (Gambar 4). Marka molekuler SSR adalah salah satu marka yang telah dikembangkan pada komoditas tanaman pangan dan perkebunan, marka molekuler ini telah dibuktikan memiliki keefektifan yang baik untuk proses pengorganisasian meteri genetik berdasarkan jarak genetik serta pemetaan gen. Pada saat ini SSRs merupakan marka yang banyak dipilih oleh peneliti genetika molekuler karena sifatnya sangat polimorfik bahkan untuk spesies maupun galur yang memiliki hubungan kekerabatan yang dekat; membutuhkan DNA dalam jumlah kecil; dan dapat dilakukan secara otomatis.

Gambar 4. Contoh urutan sekuens (urutan) DNA pada mikrosatelit tanaman.



Kelebihan dari marka SSRs yakni:
  1. Metode yang digunakan relatif sederhana serta dapat dikerjakan secara otomatis.
  2. Memiliki marka yang kebanyakan monolokus serta mengikuti sistem hereditas Hukum Mendel.
  3. Terdapat kandungan informasi yang lebih mendalam.
  4. Melimpahnya pasangan primer SSR yang cukup banyak di pasaran. 
  5. Biaya lebih efesien pergenotipe dan primernya.


5. Marka Molekuler Random Amplified Polymorphic DNA (RAPD)
Penjelasan mengenai RADP secara khusus dan lengkap ada di dalam tulisan berikut:
Penanda Molekuler RAPD


6. Marka Molekuler Amplified Fragment Length Polymorphisms (AFLPs)
AFLP (Amplified Fragment Length Polymorphisms) adalah marka molekuler yang didasarkan adanya amplifikasi yang selektif yang berasal dari potongan DNA. Potongan tersebut merupakan hasil restriksi dari total suatu genom dengan menggunakan enzim restriksi endonuklease (Gambar 5). Hasil amplifikasi tersebut kemudian dipisahkan dengan metode elektroforesis dan selanjutnya dianalisis dengan menggunakan otoradiografi atau pewarnaan perak. Marka molekuler AFLP dapat dikategorikan sebagai marka kodominan meskipun pada seringkali dianggap sebagai marka dominan. Hal tersenut dikarenakan adanya kesulitan dalam membedakan intensitas pita hasil analisis antara dominan homozigot dan heterozigot.

Gambar 5. Prosedur AFLP.

Prinsip dan Metode Isolasi DNA Plasmid

Prinsip dan Metode Isolasi DNA Plasmid


isolasi plasmid pdf, isolasi plasmid bakteri, isolasi plasmid rekombinan, isolasi dna plasmid pdf, metode isolasi plasmid, laporan isolasi plasmid, isolasi dna plasmid bakteri, jurnal isolasi plasmid, prinsip isolasi plasmid, teknik isolasi plasmid, prinsip isolasi plasmid pdf, laporan isolasi plasmid dna, manfaat isolasi plasmid, tahapan isolasi plasmid, pengertian isolasi plasmid, isolasi dna plasmid jurnal, isolasi dna plasmid adalah, metode isolasi plasmid.pdf, jurnal isolasi plasmid pdf, cara isolasi plasmid pdf, isolasi plasmid adalah, plasmid isolation alkaline lysis, plasmid isolation alkaline lysis method,
Plasmid adalah DNA ekstrakromosomal yang umum dijumpai pada mikrobia atau beberapa yeast (Madigan et al., 2012). Plasmid memiliki struktur dobel heliks sirkular dengan ukuran yang relatif lebih kecil dibandingkan ukuran DNA kromosomal, ukuran plasmid berkisar antara 2 hingga 200 kb (Turner et al., 2007). Sebagai materi genetik ektrakromosomal, plasmid tidak mengandung gen-gen yang esensial bagi pertumbuhan dan perkembangan sel sebagaimana kromosom, namun plasmid mengandung gen-gen yang dibutuhkan sel untuk bertahan hidup pada suatu kondisi tertentu (Dawson et al., 1996). Plasmid memiliki daerah awal replikasi (OriC) sehingga plasmid dapat bereplikasi secara independen dan tidak bergantung pada kromosom (Hardy, 1987). Plasmid dapat ditransfer dari satu sel ke sel yang lain. Kemampuan plasmid untuk ditransfer dari satu sel ke sel lain mengindikasikan gen-gen yang terdapat pada plasmid dapat diekspresikan pada sel lain (Campbell & Farrell, 2009).

Isolasi dna plasmid adalah proses memisahkan DNA plasmid dari sel bakteri atau yeast. Manfaat isolasi plasmid pada umumnya digunakan sebagai vektor dalam berbagai teknik rekayasa genetika seperti kloning gen atau transformasi (Nicholl, 2008). Plasmid memiliki beberapa karakteristik sehingga dapat digunakan sebagai vektor, di antaranya memiliki ukuran yang relatif kecil, hal ini sangat penting untuk efisiensi transformasi dan penanganan (Dawson et al., 1996). Selain ukuran yang relatif kecil, plasmid memiliki restriction site yang unik sehingga dapat dipotong oleh enzim endonuklease restriksi yang spesifik dan dapat diinsersikan gen atau segmen DNA pada plasmid tersebut (Campbell & Farrell, 2009). Plasmid memiliki gen pengkode resistensi terhadap antibiotik tertentu sehingga dapat digunakan sebagai marker seleksi untuk mendeteksi transforman (Turner et al., 1997). 

Dalam proses isolasi DNA plasmid bakteri maupun yeast, terdapat dua metode yang umum digunakan dalam isolasi DNA plasmid, yaitu metode boiling dan metode alkaline lysis (Sambrook & Russell, 2001). Secara umum, prinsip isolasi DNA plasmid pada kedua metode tersebut adalah sama, yaitu pelisisan sel, ekstraksi DNA plasmid, serta presipitasi dan purifikasi DNA plasmid.


Metode Isolasi Plasmid

1. Metode Boiling
Isolasi DNA plasmid dengan metode boiling menggunakan prinsip bahwa suhu tinggi setelah proses pelisisan sel akan mendenaturasi protein dan DNA, namun tidak dapat memisahkan kedua untai DNA pada struktur dobel heliks sirkular plasmid (Sambrook & Russell, 2001). Teknik isolasi plasmid tersebut disebabkan DNA sirkular plasmid memiliki topologi dua untai polinukleotida sirkular yang saling berkaitan. Pada saat suhu diturunkan, plasmid akan mengalami renaturasi, sedangkan DNA kromosomal yang menjadi linear setelah proses pelisisan sel dan tetap terikat pada membran sel tidak dapat mengalami renaturasi akan mengendap dan terpisahkan dari DNA plasmid setelah disentrifugasi (Boyer, 2000). 

2. Metode Alkaline Lisis 
Pada metode isalasi DNA plasmid ini, kondisi alkali yang disebabkan perlakuan dengan campuran SDS dan NaOH menyebabkan DNA kromosomal dan plasmid mengalami denaturasi setelah sel mengalami lisis (Turner et al., 1997). Penambahan natrium astetat setelah perlakuan alkali dapat menetralkan pH dan menyebabkan DNA mengalami renaturasi (Reece, 2004). Pada kondisi tersebut, DNA plasmid dapat mengalami renaturasi dengan segera, namun DNA kromosomal membentuk agregat yang diakibatkan adanya asosiasi interstrand dan menyebabkan DNA kromosomal terendapkan bersama komponen protein setelah disentrifugasi (Ausubelet al., 2003).

Tahapan Isolasi Plasmid

1. Pelisisan Sel
Penghancuran sel merupakan tahapan awal isolasi DNA plasmid yang bertujuan untuk mengeluarkan isi sel (Holme, 1998). Penghancuran sel pada isolasi DNA plasmid dapat dilakukan dengan menggunakan detergen atau secara enzimatik (Jones & Sutton, 1997). Detergen yang umum digunakan untuk melisiskan sel adalah SDS sodium dodecyl sulphate (SDS), detergen dapat melarutkan lipid yang terdapat pada membran sel sehingga dapat mendestabilisasi membran sel (Surzycki, 2000). Pada isolasiDNA plasmid dengan metode alkaline lysis, detergen SDS dicampur dengan NaOH dengan tujuan untuk menciptakan kondisi alkali sehingga DNA terdenaturasi (Turner et al., 1997).

2. Ekstraksi DNA Plasmid
Ekstraksi DNA plasmid bertujuan untuk memisahkan DNA plasmid dari komponen lain seperti protein dan DNA kromosomal (Nair, 2008). Penambahan natrium asetat dapat menetralkan pH alkali, hal ini menyebabkan DNA plasmid sirkular mengalami renaturasi dengan segera sedangkan DNA kromosomal tidak dapat mengalami renaturasi dengan sempurna diakibatkan adanya asosiasi intrastrand sebagaimana disebutkan sebelumnya, sehingga terendapkan bersama komponen protein setelah disentrifugasi (Ausubel et al., 2003). Saat proses ekstraksi DNA, seringkali digunakan chelating agent seperti ethylenediamine tetraacetic acid (EDTA) yang berperan menginaktivasi enzim DNase yang dapat mendenaturasi DNA yang diisolasi, EDTA menginaktivasi enzim nuklease dengan cara mengikat ion magnesium yang dibutuhkan sebagai kofaktor enzim nuklease (Walker & Ralph, 2008).

3. Presipitasi dan Purifikasi DNA
Pada tahap ekstraksi, DNA plasmid akan berada pada fase aqueous setelah penambahan natrium asetat dan disentrifugasi (Howe, 2007). DNA plasmid yang berada pada fase aqueous tersebut dapat dipresipitasi dengan menggunakan isopropanol atau ethanol (Reamet al., 2003). Kedua kemikalia tersebut akan mempresipitasi DNA pada fase aqueous sehingga DNA menggumpal membentuk struktur fiber dan terbentuk pellet setelah sentrifugasi dilakukan (Switzer, 1999). Pada tahap presipitasi ini, DNA yang terpresipitasi akan terpisah dari residu-residu RNA dan protein yang masih tersisa, residu tersebut juga mengalami koagulasi, namun tidak membentuk struktur fiber dan berada dalam bentuk presipitat granular, saat ethanol atau isopropanol dibuang dan pellet dikeringanginkan dalam tabung, maka pellet yang tersisa dalam tabung adalah DNA pekat, presipitasi kembali dengan ethanol atau isopropanol sebelum pellet dikeringanginkan akan meningkatkan derajat kemurnian DNA yang didapat (Bettelheim & Landesberg, 2007). 

Protokol Metode Alkaline Lisis 

plasmid isolation conventional method, cara isolasi plasmid, plasmid isolation column, plasmid isolation contamination, plasmid isolation cesium chloride, plasmid isolation centrifuge, plasmid isolation concept, plasmid isolation cscl, isolasi plasmid dna, isolasi plasmid dengan metode alkali lisis, isolasi dna plasmid ppt, isolation plasmid dna, isolation plasmid dna alkaline lysis method, isolation plasmid dna protocol, pembahasan isolasi plasmid dna, prinsip isolasi dna plasmid, metode isolasi dna plasmid, praktikum isolasi dna plasmid, prosedur isolasi dna plasmid, teknik isolasi dna plasmid, jurnal isolasi dna plasmid pdf, teori isolasi dna plasmid, proses isolasi dna plasmid, plasmid isolation experiment, plasmid isolation electrophoresis


Isolasi DNA plasmid dengan prinsip alkalyne lysis yakni langkah pertama yang dilakukan ini adalah resuspensi pellet sel bakteri dengan larutan I. Larutan I adalah campuran glukosa, Tris-HCl, dan Na-EDTA. Komponen glukosa pada larutan I dapat berperan sebagai buffer untuk mempertahankan pH agar tetap pada kisaran 12, hal ini sangat penting karena tahap pelisisan sel menggunakan SDS-NaOH membutuhkan kondisi pH basa (Birnboim & Doly, 1979; Ausubel et al., 2003). Fungsi Tris-HCl dalam larutan I sebagai buffer setelah sel mengalami pelisisan, sebagaimana disebutkan Surzycki (2000), kondisi pH setelah pelisisan sel dapat dipertahankan pada kisaran 7,6-9 yang merupakan kisaran pH fisiologis internal sel, sehingga DNA tidak mengalami kerusakan. Na-EDTA pada larutan I berperan sebagai chelating agent yang dapat menginaktivasi enzim DNase dengan cara mengikat ion magnesium yang dibutuhkan sebagai kofaktor enzim nuklease sehingga dapat mencegah DNA terdenaturasi oleh aktivitas DNase (Bettelheim & Landesberg, 2007; Walker & Ralph, 2008).

Larutan II yang merupakan campuran SDS dan NaOH ditambahkan pada suspensi sel bakteri dalam larutan I. Penggunaan SDS dalam larutan II bertujuan untuk melisiskan membran sel, O'sullivan dan Klaenhammer (1993) menyebutkan bahwa SDS merupakan detergen anionik yang dapat melisiskan membran sel. Selain melisiskan sel, SDS dapat mereduksi aktivitas enzim nuklease dengan kemampuannya mendenaturasi komponen protein selular (Switzer, 1999). Komponen NaOH pada larutan II dapat memberikan kondisi basa yang menyebabkan DNA mengalami denaturasi (Ausubel et al., 2003; Reece, 2004). Hal tersebut mengindikasikan bahwa penambahan larutan II merupakan tahap pelisisan sel dalam proses isolasi DNA plasmid.

Penambahan larutan III (Natrium asetat) pada campuran pellet sel bakteri, larutan I, dan larutan II bertujuan untuk memisahkan antara DNA plasmid dengan komponen selular lain seperti protein, DNA kromosomal, dan debris sel, setelah sel dilisiskan. Dale & von Schantz (2007) menyebutkan bahwa penambahan natrium asetat dapat menurunkan pH dan menyebabkan DNA plasmid yang berukuran lebih kecil dari DNA kromosomal dapat segera mengalami renaturasi sedangkan DNA kromosomal tidak dapat langsung segera mengalami renaturasi. Inkubasi pada es selama 10 menit yang dilakukan setelah penambahan larutan III dapat memaksimalkan renaturasi DNA plasmid (Wilson & Walker, 2010). Sentrifugasi setelah penambahan natrium asetat dapat menyebabkan DNA kromosomal, protein, dan RNA dengan berat molekul yang relatif besar mengalami presipitasi (Reece, 2004). Hal tersebut menandakan bahwa pellet yang terbentuk setelah sentrifugasi yang dilakukan setelah penambahan larutan III adalah presipitat DNA kromosomal, protein, dan RNA dengan berat molekul relatif besar, sedangkan DNA plasmid berada pada supernatan.

DNA plasmid yang terdapat supernatan dapat dipekatkan dan dipisahkan dari kontaminan terlarut melalui proses presipitasi, sebagaimana disebutkan Davis et al. (1994) bahwa komponen DNA yang terdapat pada supernatan masih tercampur dengan garam-garam terlarut komponen buffer dan DNA dapat dipisahkan dari kontaminan terlarut melalui presipitasi DNA. Presipitasi DNA plasmid dalam supernatan dilakukan dengan menambahkan isopropanol. DNA dapat terpresipitasi setelah penambahan isopropanol disebabkan DNA tidak terlarut dalam isopropanol (Dolphin, 1998). Hasil presipitasi DNA plasmid dengan penambahan isopropanol pada umunya nampak sebagai pellet berwarna putih. 

Pellet DNA yang terbentuk setelah presipitasi dengan menggunakan isopropanol dapat dipurifikasi untuk meningkatkan kemurnian DNA yang didapat. Proses purifikasi DNA dilakukan dengan pencucian menggunakan ethanol 70%. Pencucian dengan ethanol 70% dapat menghilangkan residu-residu garam yang masih tersisa setelah presipitasi, sehingga DNA yang didapatkan lebih murni (Keller & Mark, 1989; Zyskind & Sanford, 1992).

Setelah pencucian dengan ethanol 70%, ethanol kemudian dibuang dan pellet dikeringanginkan, lalu ditambahkan buffer TE dan disimpan di freezer. Pelt-Verkuilet al. (2008) menyatakan bahwa buffer TE dan penyimpanan suhu pada -20 °C memungkinkan DNA sampel yang telah diekstraksi dapat disimpan hingga waktu berminggu-minggu. Keller & Mark (1989) menyebutkan bahwa pelarutan kembali dengan buffer TE dapat memisahkan antara RNA yang mempunyai berat molekul lebih rendah dibandingkan DNA sehingga DNA yang didaptkan tidak terkontaminasi oleh RNA dan DNA sangat stabil ketika disimpan dalam keadaan terpresipitasi pada suhu -20 °C.

Jika DNA plasmid yang didapatkan belum menunjukkan informasi mengenai derajat kemurnian ataupun ukuran molekulnya, maka perlu dilakukan pengujian lebih lanjut untuk menguji keberhasilan proses isolasi DNA plasmid. Analisis spektrofotometri dapat digunakan untuk mengukur konsentrasi dan kemurnian DNA (Zyskind & Sanford, 1992; Dolphin, 2008), sedangkan ukuran DNA plasmid yang didapat dapat diperiksa melalui analisis elektroforesis (Holme & Hazel, 1998).

Health-Related Quality of Life of Patients with HPV-Related Cancers in Indonesia Didik Setiawan, PhD1,2,*, Arrum Dusaļ¬tri, BPharm2, Gi...