Minggu, 14 Juli 2019

Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn.

Apu AS, Muhit MA, Tareq SM, Pathan AH, Jamaluddin ATM, Ahmed M

Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka,
Dhaka 1000, Bangladesh
Address for correspondence: Mr. Apurba Sarker Apu; E-mail: apurba2sarker@yahoo.com


ABSTRACT
The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 mg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC50 of 0.52 mg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC50 of 1.94 mg/ml and 2.13 mg/ml, respectively). The LC50 values of the carbon tetrachloride and aqueous fraction were 4.46 mg/ml and 5.13 mg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay.

Key words: Antimicrobial activity, Artemia salina, brine shrimp lethality bioassay, Dillenia indica

DOI: 10.4103/0975-1483.62213


INTRODUCTION
The genus Dillenia has 60 species, of which Dillenia indica Linnaeus (Family: Dilleniaceae) is the most common edible species. Originally from Indonesia, this evergreen tropical tree is now found from India to China. The common names include Chulta (Bengali, Hindi), Bhavya (Sanskrit) and Elephant apple (English). It is a spreading tree and has beautiful white fragrant flowers, toothed leaves, and globose fruits with small brown seeds.[1] The leaf, bark, and fruit of this plant are used as traditional medicine. The juice of D. indica leaves, bark, and fruits are mixed and given orally (5-15 ml, two to five times daily) in the treatment of cancer and diarrhea.[2] The fruit juice of this plant has
cardiotonic effect, used as cooling beverage in fever and also employed in cough mixture.[3] The solvent extracts of fruits of D. indica are reported to have antioxidant activity. [4] CNS depressant activities in mice were found from the alcoholic extract of the leaves of D. indica.[5] Considering the traditional uses of D. indica plant parts, leaves can be the source of many modern medicines.

A survey of the published literature shows that there are a number of different methods used for the assessment of antimicrobial activity; however, there is no one method that is used by all researchers and no inclusive study to determine which one is the best method for in vitro assay.[6] Majority of the researchers uses one of the three following methods for the assessment of antimicrobial activity: Disc diffusion, agar dilution, and broth dilution/microdilution method. The disc diffusion method (also known the zone of inhibition method)[7] is probably the most widely used of all methods used for testing antibacterial and antifungal activity.[6] It requires only small amounts of the test substance (10-30 ml), can be completed by research staff with minimal training, and as such may be useful in field situations.[6] Several researchers have used the method to identify the antibacterial and antifungal activities of the plant extracts,[8] compounds isolated from plants,[9] and also to find out the antimicrobial resistant strains of microorganisms.[10,11] It is important to note that the disc diffusion method demonstrated activity in vitro does not always translate to activity in vivo.[6]

The brine shrimp lethality bioassay is rapid (24 h), simple (e.g., no aseptic techniques are required), easily mastered, inexpensive, and requires small amounts of test material (2‑20 mg or less).[12] The bioassay has a good correlation with cytotoxic activity in some human solid tumors and with pesticidal activity.[12,13] This test was proposed by Michael et al.[14] and modified by others.[15,16] Since its introduction, this in vivo lethality test has been successively employed for providing a frontline screen that can be backed up by more specific and more sophisticated bioassays once the active compounds have been isolated.

The objective of this research work was to investigate the antimicrobial and cytotoxic activities of the different solvent fractions of crude methanolic extract of D. indica leaves.


MATERIALS AND METHODS

Collection of plant material

The plant sample of D. indica was collected from Rangpur, Bangladesh, in the month of March 2007. The plant was identified and a voucher specimen (Accession number DACB 34359) representing this collection has been deposited in the Bangladesh National Herbarium, Dhaka, for further reference.

Preparation, extraction and fractionation of plant material

The freshly separated leaves of the plant were cut into small pieces, sun dried, and subsequently dried in the oven for 24 h at low temperature to grind these into coarse powder (40-mesh).

About 500 g of powdered leaves was taken in a 5 l round bottom flask and soaked in 2 l of methanol. The container with its content was sealed with cotton plug and aluminum foil and kept at room temperature for a period of 3 days accompanying occasional shaking and stirring. The extract was filtered through fresh cotton plug followed by Whatman No.1 filter paper. The filtrate was then concentrated and dried by a rotary evaporator (Heidolph, UK) at low temperature (398C). The weight
of the crude extract thus obtained from leaves was 7 g.

Solvent-solvent fractionation of the crude methanolic extract was conducted by using the protocol designed by Kupchan[17] and modified by Wagenen et al.[18] 5 g of the obtained methanolic crude extract was triturated with 90% methanol. The prepared solution was then fractionated successively using solvents of increasing polarity, such as, n-hexane (HX), carbon tetrachloride (CT), and chloroform (CF). The aqueous methanolic fraction was preserved as aqueous fraction (AQ). All the four fractions were evaporated to dryness by using rotary evaporator and then kept in beakers for further analysis (HX 820 mg, CT 550 mg, CF 665 mg and AQ 400 mg).


Antimicrobial screening

Antibacterial and antifungal activities of crude extracts were tested by the paper disc diffusion method.[7] Thirteen bacterial strains, which included 5 gram-positive and 8 gramnegative organisms, and 3 fungi collected from the Institute of Nutrition and Food Science (INFS), University of Dhaka, Bangladesh, as pure cultures were used. Microorganisms were maintained on the nutrient agar medium (Merck, Germany). 

The sterile Matricel (BBL, cocksville USA) 6.0 mm filter paper discs were impregnated with 400 mg of each of the sterile test substances and dried to evaporate the residual solvent (methanol). Standard kanamycin discs (30 mg/ disc) were used as positive control to ensure the activity of standard antibiotic against the test organisms. The sample discs, the standard antibiotic discs, and dried blank disc impregnated with methanol (negative control) were placed gently on the previously marked zones in the agar plates pre-inoculated with the test bacteria and fungi. The plates were then kept in a refrigerator at 4oC for about 24 h upside down to allow sufficient diffusion of the materials from the discs to the surrounding agar medium. The plates were then inverted and kept in an incubator at 378C for 24 h.

The antimicrobial activity of the test agents were measured by their activity to prevent the growth of the microorganisms surrounding the discs which gave clear, distinct zone of inhibition. The antimicrobial activity of the test agents was determined by measuring the diameter of zone of inhibition expressed in mm.[6]


Brine shrimp lethality bioassay

The brine shrimp lethality bioassay was used to predict the cytotoxic activity[15,19] of the n-hexane, carbon tetrachloride, chloroform, and aqueous fractions from methanolic crude extracts. For the experiment, 4 mg of each of the extracts was dissolved in dimethylsulfoxide (DMSO) and solutions of varying concentrations (400, 200, 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78 mg/ ml) were obtained by the serial dilution technique using simulated seawater. The solutions were then added to the pre-marked vials containing 10 live brine shrimp nauplii in 5 ml simulated seawater. After 24 h, the vials were inspected using a magnifying glass and the number of survived nauplii in each vial was counted.
The mortality endpoint of this bioassay was defined as the absence of controlled forward motion during 30 s of observation.[20] From this data, the percent of lethality of the brine shrimp nauplii for each concentration and control was calculated. An approximate linear correlation was observed when logarithm of concentration versus percentage of mortality[21] was plotted on the graph paper and the values of LC50 were calculated using Microsoft Excel 2003 [Figure 1].
Vincristine sulphate was used as positive control.

Figure 1: Plot of log concentration of n-hexane (— 􀌆 —), carbontetrachloride (— O —), chloroform (— Δ —) and aqueous (— 3 —) fractionof methanolic extract versus percent shrimp mortality after 24 h of exposure

RESULT AND DISCUSSION

With the exception of aqueous fraction, all the other fractions of D. indica leaves were active against most of the tested organisms [Table 1]. The average zone of inhibition produced by the n-hexane, carbon tetrachloride, and chloroform fraction was ranged from 6-8 mm, 7-8 mm, and 6-7 mm, respectively, at a concentration of 400 mg/ disc. Against the Escherichia coli, only chloroform fraction was active (zone of inhibition was 7 mm) and carbon tetrachloride fraction exhibited highest antimicrobial activity compared to other solvent fractions. In both the cases of bacteria and fungi, the zone of inhibition was found to be 6-8 mm.

The LC50 values obtained from brine shrimp lethality bioassay [Tables 2 and 3] were 1.94, 4.46, 2.13, and

Table 1: Antimicrobial activity of chloroform, carbon tetrachloride, n-hexane, and aqueous fraction of methanolic extract of Dillenia indica leaves and positive control kanamycin


Table 2: Effect of n-hexane, carbon tetrachloride, chloroform and aqueous fraction of methanolic extract and positive control vincristine sulphate on brine shrimp


Table 3: The result of cytotoxic activity of n-hexane (HX), carbon tetrachloride (CT), chloroform (CF), and aqueous (AQ) fraction of methanolic extract and positive control vincristine sulphate (VS) on brine shrimp

5.13 mg/ml for n-hexane (HX), carbon tetrachloride (CT), chloroform (CF), and aqueous (AQ) fraction, respectively. Compared to positive control (vincristine sulphate, VS, LC50 0.52 mg/ml), all the fractions tested showed good brine shrimp larvicidal activity. Again the crude extracts resulting in LC50 values less than 250 mg/ml were considered significantly active and had the potential for further investigation.[22] The cytotoxic activity exhibited by the solvent fractions was promising and this clearly indicates the presence of potent bioactive compounds.[15]


CONCLUSION

The antimicrobial and cytotoxic activities of various fractions of D. indica leaves, found in this study, may explain some of the traditional medicinal uses of this plant. These could be of particular interest in relation to find out its unexplored efficacy and can be a potential source of chemically interesting and biologically important drug candidates.


ACKNOWLEDGEMENTS

The authors would like to acknowledge the head of Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh for providing facility and moral support to conduct the research.


REFERENCES

1. Janick J, Paull RE, editors. The encyclopedia of fruit and nuts. 1st ed. London: CABI; 2008.
2. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia 2001;72:146-61.
3. Shome U, Khanna RK, Sharma HP. Pharmacognostic studies on Dillenia indica Linn: II- Fruit and Seed. Proc Indian Acad Sci (Plant Sci) 1980;89:91‑104.
4. Abdille MH, Singh RP, Jayaprakasha GK, Jena BS. Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 2005;90:891-6.
5. Bhakuni DS, Dhar ML, Dhar MN, Dhawan BN, Mehrotra BN. Screening of Indian plants for biological activity, II. Indian J Exp Biol 1969;7:250.
6. Wilkinson JM. Methods for testing the antimicrobial activity of extracts. In: Ahmad I, Aqil F, Owais M, editors. Modern phytomedicine: Turning medicinal plants into drugs. Germany: Wiley-VCH; 2007. p. 157-69.
7. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 1966;45:493-6.
8. Belboukhari N, Cheriti A. Antibacterial and antifungal activities of crude extracts from Launeae arborescens. Pak J Biol Sci 2006;9:1-2.
9. Khan A, Rahman M, Islam MS. Antibacterial, antifungal and cytotoxic activities of amblyone isolated from Amorphophallus campanulatus. Indian J Pharmacol 2008;40:41-4.
10. Hallander HO, Laurell G. Identification of cephalosporin-resistant Staphylococcus aureus with the disc diffusion method. Antimicrob Agents Chemother 1972;1:422-6.
11. Vedel G. Simple method to determine b-lactam resistance phenotypes in Pseudomonas aeruginosa using the disc agar diffusion test. J Antimicrob Chemother 2005;56:657-64.
12. Ghisalberti EL. Detection and isolation of bioactive natural products. In: Colegate SM, Molyneux RJ, editors. Bioactive natural products: Detection, isolation and structure elucidation. New York: CRC Press; 1993. p. 15-8.
13. McLaughlin JL, Rogers LL, Anderson JE. The use of biological assays to evaluate botanicals. Drug Inform J 1998;32:513-24.
14. Michael AS, Thompson CG, Abramovitz M. Artemia salina as a test organism for a bioassay. Science 1956;123:464.
15. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica 1982;45:31-4.
16. Solís PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD. A microwell cytotoxicity assay using Artemia salina. Planta Medica 1993;59:250-2.
17. Kupchan SM, Tsou G. Bruceantin: A new potent antileukemic simaroubolide from Brucea antidysenterica. J Org Chem 1973;38:178-9.
18. Wagenen BC, Larsen R, Cardellina JH 2nd, Ran dazzo D, Lidert ZC, Swithenbank C. Ulosantoin, a potent insecticide from the sponge Ulosa ruetzleri. J Org Chem 1993;58:335-7.
19. McLaughlin JL, Rogers LL. The use of biological assays to evaluate botanicals. Drug Inf J 1999;32:513.
20. Middleton P, Stewart F, Al-Qahtani S, Egan P, O’Rourke C, Sarker SD, et al. Antioxidant, antibacterial activities and general toxicity of Alnus glutinosa, Fraxinus excelsior and Papaver rhoeas. Iranian J Pharma Res 2005;2:81-6.
21. Persoone G, Sorgeloos P, Roels O, Jaspers E, editors. The brine shrimp Artemia. Proceedings of the international symposium on the brine shrimp Artemia salina; 1979 Aug 20-23; Texas, USA. Belgium: Universa Press; 1980.
22. Rieser MJ, Gu ZM, Fang XP, Zeng L, Wood KV, McLaughlin JL. Five novel mono-tetrahydrofuran ring acetogenins from the seeds of Annona muricata. J Nat Prod 1996;59:100-8.


Source of Support: Nil, Conflict of Interest: None declared.

Sabtu, 13 Juli 2019

Ranbir Chander Sobti 
Naveen Kumar Arora · Richa Kothari
Editors

Environmental Biotechnology:
For Sustainable Future










ISBN 978-981-10-7283-3                      ISBN 978-981-10-7284-0 (eBook)
https://doi.org/10.1007/978-981-10-7284-0

Library of Congress Control Number: 2018957141

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,

Singapore

Contents

Part I Biodegradation and Bioremediation
1 Biochar for Effective Cleaning of Contaminated
Dumpsite Soil: A Sustainable and Cost-Effective
Remediation Technique for Developing Nations................................... 3
Paromita Chakraborty, Moitraiyee Mukhopadhyay, R. Shruthi,
Debayan Mazumdar, Daniel Snow, and Jim Jian Wang

2 Scope of Nanoparticles in Environmental Toxicant Remediation....... 31
Anupam Dhasmana, Swati Uniyal, Vivek Kumar, Sanjay Gupta,
Kavindra Kumar Kesari, Shafiul Haque, Mohtashim Lohani,
and Jaya Pandey

3 Removal of Inorganic and Organic Contaminants from
Terrestrial and Aquatic Ecosystems Through
Phytoremediation and Biosorption......................................................... 45
Dhananjay Kumar, Sangeeta Anand, Poonam, Jaya Tiwari,
G. C. Kisku, and Narendra Kumar

4 Environmental Health Hazards of Post-Methanated
Distillery
Effluent and Its Biodegradation and Decolorization............................ 73
Sangeeta Yadav and Ram Chandra

5 Heavy Metal Contamination: An Alarming Threat
to Environment and Human Health....................................................... 103
Sandhya Mishra, Ram Naresh Bharagava, Nandkishor More,
Ashutosh Yadav, Surabhi Zainith, Sujata Mani, and Pankaj
Chowdhary

Part II Sustainable Agriculture
6 Plant Growth-Promoting Rhizobacteria: Diversity
and Applications....................................................................................... 129

Maya Verma, Jitendra Mishra, and Naveen Kumar Arora

7 Plausible Role of Plant Growth-Promoting Rhizobacteria
in Future Climatic Scenario.................................................................... 175
R. Z. Sayyed, N. Ilyas, B. Tabassum, A. Hashem, E. F. Abd_Allah,
and H. P. Jadhav

8 Plant Growth-Promoting Microbes: Contribution
to Stress Management in Plant Hosts..................................................... 199
Krishna Sundari Sattiraju, Srishti Kotiyal, Asmita Arora,
and Mahima Maheshwari

9 Chemistry, Therapeutic Attributes, and Biological
Activities of Dillenia indica Linn............................................................ 237
Ashok K. Singh and Sudipta Saha

Part III Aquatics and Wastewater Treatment
10 Implication of Algal Microbiology for Wastewater
Treatment and Bioenergy Production.................................................... 263
Vinayak V. Pathak, Shamshad Ahmad, and Richa Kothari

11 Efficiency of Constructed Wetland Microcosms (CWMs)
for the Treatment of Domestic Wastewater Using Aquatic
Macrophytes............................................................................................. 287
Saroj Kumar and Venkatesh Dutta

12 Modelling Water Temperature’s Sensitivity to Atmospheric
Warming and River Flow........................................................................ 309
Shaik Rehana, Francisco Munoz-Arriola, Daniel A. Rico, and
Shannon L. Bartelt-Hunt

Part IV Other Aspects
13 Thermophiles vs. Psychrophiles: Cues from Microbes
for Sustainable Industries....................................................................... 323
Monica Sharma

14 Role of Solar Energy Applications for Environmental
Sustainability............................................................................................ 341
Atin K. Pathak, Kapil Chopra, Har Mohan Singh, V. V. Tyagi,
Richa Kothari, Sanjeev Anand, and A. K. Pandey

15 Natural Sensitizers and Their Applications
in Dye-Sensitized Solar Cell.................................................................... 375
A. K. Pandey, Muhammad Shakeel Ahmad,

Nasrudin Abd Rahim, V. V. Tyagi, and R. Saidur

Chapter 9
Chemistry, Therapeutic Attributes, and Biological Activities of Dillenia indica Linn

Ashok K. Singh and Sudipta Saha

Contents
Introduction 238
Chemistry 239
Traditional and Therapeutic Uses 243
Biological Activities of D. indica 245
Cytotoxicity 245
Immunomodulatory 246
Antidiabetic Activity 246
Anti-inflammatory and Antinociceptive Activity 247
Antioxidant Activity 248
Antimicrobial Activity 249
Antidiarrheal Activity 250
Antiprotozoal Activity 251
Antimutagenic Activity 251
Anticholinergic Activity 251
Protoscolicidal Activity 251
Hemolytic Activity 252
Hair Treatment Activity 252
Enzyme Inhibitory Activity 252
Toxicology of D. indica 252
D. indica in Drug Formulation and Drug Delivery 253
Future Prospects 254
Conclusion 254
References 255

Abstract Dillenia indica Linn. (Dilleniaceae) is generally known as elephant apple and locally known as outenga. The vernacular names are chalta, chulta, bhavya, karambel, ouu, and ramphal. This evergreen deciduous tree is markedly disseminated in the seasonal tropics of many Asian countries, in India from Himalaya to south India. The different parts of this plant have been prevalently investigated for the plethora of biological activities including anticancer, antidiabetic, antihyperlipidemic, antileukemic, antioxidant, antimutagenic, antimicrobial, antinociceptive, antidiarrheal, and hairweaving activities. Differently prepared extracts of this plant have been reported mainly to contain a wide range of flavonoids, triterpenoids (lupene-type), phytosteroids, phenolics, alcohols, and ketones and an anthraquinone. Several phytochemical investigations revealed substantial presence of various types of active constituents including β-sitosterol, stigmasterol, betulin, betulinic acid, kaempferol, myricetin, quercetin, dillenetin and rhamnetin. Among these the major chemical constituents are betulin and betulinic acid (lupene-type triterpenoids) that show a wide spectrum of pharmacological activities like anti-HIV, anticancer, antimalarial, anti-inflammatory, etc. The present chapter thus approaches to highlight on phytochemistry, traditional and therapeutic uses, and biological activities of Dillenia indica.

Keywords Dillenia indica · Therapeutic attributes · Phytochemistry · Therapeutic
uses · Pharmacology


Introduction

A vast amount of knowledge and practices on herbal medicinal systems have been transmitted through the ages. For centuries, medicinal plants were the only resources available for the treatment of several diseases which afflicted humanity (Ozdemir and Alpınar 2015). Numerous of these plants are uncommon, endemic, and found only in forest region. There is neither biological data nor satisfactory information that prompted their rarity in the natural surroundings (Kerrigan et al. 2011). Correspondingly, there are many plant species which have been utilized by tribal and folk communities of different forest regions of India; however, their medicinal and also pharmacological esteem is yet obscure as these plants are hardly available. There are many plant species which have been utilized by tribal groups of India; however, their restorative and also pharmacological knowledge is yet obscure as these plants are not easily accessible and studied. Among these, there are few plants belonging to family Dilleniaceae which have not gained much popularity but have interesting medicinal values. The genus Dillenia has 60 species; however, only a few of them are reported to have important phytochemicals and thereby enrich their medicinal values. These species are D. indica, D. pentagyna, D. suffruticosa, D. andamanica, D. serrata, D. sumatrana, D. aurea, D. bracteata, D. excelsa, D. ovata, D. papuana, D. parviflora, D. philippinensis, D. pulchella, D. reticulata, D. scabrella, D. eximia, and D. triquetra. Only two plants D. indica Linn. and D. pentagyna Roxb. are available in India. D. indica has been extensively studied and a more commonly employed medicinal plant in different parts of India (Dickison 1979). Several research works have been conducted on the isolation and quantification of the different phytochemicals from various parts of D. indica; however, very few phytochemical investigations have been performed from D. pentagyna.


Chemistry

The significant classes of chemical constituents extracted from D. indica are flavonoids and triterpenoids (lupene-type). Other isolated compounds including phytosteroids, diterpene, ionone, phenolics, anthraquinone, alcohols, and ketones also enhance the diversity of phytochemistry in D. indica. As per our extensive search, a total of 34 compounds isolated from D. indica are included in this review which may lead to further research and noble challenge to discover new chemical constituents from this plant. These compounds are listed in Table 9.1, and their chemical structures are displayed in Fig. 9.1.

Stem bark of D. indica contains triterpenoids like lupeol, betunaldehyde, and betulinic acid; flavonoids like kaempferol, dillenetin, rhamnetin, dihydro-isorhamnetin, myricetin, naringenin, and quercetin; and 10% tannin (Shah 1978; Khanum et al. 2007; Khare 2007). The ethanol extract of stem bark is enriched with two flavonoids, kaempferol and quercetin, as well as a triterpenoid (Srivastava and Pande 1981). Parvinet al. (2009) acquired methanolic extract of stem after partitioning with n-hexane and isolated four compounds, viz., lupeol, betulinic acid, betunaldehyde, and stigmasterol, using column chromatographic separation.

Leaves of D. indica contain betulinic acid, betulin, lupeol, and β-sitosterol (Dan and Dan 1980). The petroleum ether extract of leaves contains betulin, β-sitosterol, cycloartenone, and n-hentriacontanol, whereas chloroform extract has betulinic acid (Mukherjee and Badruddoza 1981). Methanolic extract of leaves after fractionation with n-hexane and chloroform also has compounds like betulinic acid, β-sitosterol, dillenetin, and stigmasterol (Muhit et al. 2010). Phytochemicals have also been investigated from acid hydrolyzed extracts of dried leaves which demonstrated the presence of kaempferol, whereas fresh leaves were found to contain dihydrokaempferide and naringenin-7-diglucoside which get further oxidized to ten corresponding flavonols (Bate-Smith and Harborne 1971). Kumar et al. (2010) isolated and quantified betulinic acid using validated HPLC method from various fractions such as methanol, ethyl acetate, n-butanol, and water. The highest concentration among them was found in ethyl acetate fraction.

Fruit of D. indica contains about 34% of total phenolics in methanolic extract (Abdille et al. 2005), isorhamnetin (Pavanasasivam and Sultanbawa 1975a), lupeol, betulin, β-sitosterol (Sundararamaiah et al. 1976), and polysaccharide like arabinogalactan. Uppalapati and Rao (1980) reported the presence of steroids, saponins, fixed oil, free amino acids, glycosides, tannins, and sugars in the seeds of D. indica. These scientific reports collectively revealed that betulin, betulinic acid, and β-sitosterol are present in almost all parts of D. indica.

Table 9.1 Compounds isolated from D. indica







Fig. 9.1 Structure of compounds isolated from Dillenia indica

Traditional and Therapeutic Uses

Usually all parts of D. indica are traditionally exploited for therapeutic purposes. The jelly-like content inside the fruit of D. indica is applied for hair treatment against dandruff and falling hair. The mixed juices of leaves and stem bark are used orally for the prevention of diarrhea and cancer (Yeshwante et al. 2009a, b; Sunil et al. 2011). The leaves and stem bark are also used as laxative and astringent (Sharma et al. 2009). Apart from this, the stem bark is used for the production of charcoal. The fresh and dried materials of various parts of D. indica are processed as juice, decoction, poultice, and mucilage for the medical care of diabetes, wounds, diarrhea, cancer, rheumatism, urinary problems, skin diseases, aches, fever, cough, and falling hair. Almost all the known medicinal uses of D. indica are enlisted in Table 9.2. Skin diseases including leukoderma, eczema, skin itches, and skin rash can be treated using the leaf, fruit, and stem bark of D. indica (Quattrocchi 2012; Boer et al. 2012; Bhat et al. 2014). Leaves of D. indica as well as decoction and juice of the fruit and stem bark are exploited in daily practices to attenuate cancerous growth, particularly breast and gastric cancers (Das et al. 2009; Sharma et al. 2001). Furthermore, fruit juice of D. indica is supplemented orally to eliminate fever and cough-associated symptoms (Angami et al. 2006; Quattrocchi 2012). The mixed juice of fruit and calyx of D. indica is used in daily practices for the treatment of diabetes (Pavani et al. 2012; Ripunjoy 2013). The root of D. indica is generally utilized for the purpose of abortion (Quattrocchi 2012). Moreover, the mucilage of D. indica fruits is used to treat falling hair, to clean hair, as well as to remove dandruff from hair (Saikia et al. 2006). The sweetish-sour edible fruits of this plant may be consumed directly or juiced with sugar to take as fresh and healthy drink. An interesting event is that the bark of the stem and roots has extensively been used as a food-poisoning neutralizer (Grosvenor et al. 1995a, b; Islam et al. 2014). Altogether, it is concluded that D. indica contains the chemical constituents that can treat a broad spectrum of human ailments.

Table 9.2 Traditional and therapeutic uses of D. indica




Biological Activities of D. indica

Cytotoxicity

Cytotoxic activity of phytochemicals present in different parts of D. indica was screened against numerous cancer cell lines. In vitro cytotoxic activity against leukemia, carcinoma, and lymphoma cells was reported using methanol extracts of D. indica fruit (Kumar et al. 2010) and leaves (Akter et al. 2014). In particular, the methanol extract of the fruit inhibited the growth of U937, HL60, and K562 cancer cell lines with IC50 of 328.80, 297.69, and 275.40 mg/mL, respectively, comparable to standard drugs Ara C and Gleevec (Kumar et al. 2010), whereas the methanol extract of the leaves inhibited the growth of AGS, MCF-7, and MDA-MB-231 cancer cell lines with IC50 values of 1.18, 0.34, and 0.54 mg/mL, respectively, as compared to cycloheximide with IC50 values of 0.0010, 0.061, and 0.0004 mg/mL, respectively (Akter et al. 2014). On the contrary, the ethanol and aqueous extracts were noticed noncytotoxic toward the cancer cell lines (Nguyen-Pouplin et al. 2007; Armania et al. 2013a, b). Ultimately, a significant correlation was established between the presence of betulinic acid and cytotoxic activity of extracts and fractions of D. indica. For example, the ethyl acetate fraction of the methanol extract of D. indica calyx containing considerable amounts of betulinic acid exhibited prominent cytotoxicity when compared to the n-butanol fraction (Kumar et al. 2010). Other than betulinic acid, three compounds (lupeol, betulin, and gallic acid) isolated from D. indica were also proven to have cytotoxic activity toward cancer cell lines. Finally, the result revealed that lupane-type triterpenoids isolated from D. indica (lupeol, betulin, and betulinic acid) displayed considerable cytotoxic properties. Although the cytotoxicity of this plant is very less studied and needs to be performed on variety of cell lines, however, these findings may provide a great opportunity for further development of anticancer compounds from D. indica.


Immunomodulatory

The cornerstone of good health is no doubt a strong, well-functioning immune system. Phytochemicals such as flavonoids, terpenoids, glycosides, and phenolic compounds act as a natural defense system not only for the host plant, but also they can serve in immunomodulatory activities in humans (Venkatalakshmi et al. 2016). For example, the aqueous methanolic extract (70%) of D. indica fruit enhanced the production of polyclonal immunoglobulin M (IgM) in cultured BALB/c female mice spleen cells at a concentration of 200 mg/mL as compared to lipopolysaccharide (0.1 mg/mL) (Sarker et al. 2012).


Antidiabetic Activity

Indian natives have since long used D. indica to treat diabetes. The leaf extract of D. indica was found to inhibit enzymatic activity of rat intestinal sucrose and maltase (Jong-Anurakkun et al. 2007). Moreover, the leaf extract of D. indica assayed on streptozotocin (STZ)- and alloxan-induced type 1 and type 2 diabetic rats reduced the levels of blood glucose, hypertriglyceridemia, and hypercholesterolemia. In fact, the extract enhanced the production of insulin and high-density lipoprotein cholesterol (HDL-c) (Jong-Anurakkun et al. 2007; Kumar et al. 2011a, b). Additionally, the extract inhibited overproduction of liver function enzymes such as aspartate transaminase (AST), alanin transaminase (ALT), and alkaline phosphatase (ALP) in diabetic rats (Kumar et al. 2011a, b). Histopathological studies showed that the liver, pancreas, and kidney in the treated rats restored to normal conditions after treatment with the extract of D. indica (Kumar et al. 2011b). In an experiment performed by Kumar et al. (2011a, b), the ethyl acetate fraction of the methanol extract of the leaves assayed in vivo on STZ-induced type 1 and type 2 diabetic rats showed a reduction in blood glucose, serum cholesterol, and triglyceride levels after 21 days of treatment at the doses of 200 and 400 mg/kg body weight (bw). This fraction also increased the level of HDL-C in the treated rats. Likewise, the defatted methanol extract of the leaves assayed in vivo on type 1 diabetic rats induced by STZ and alloxan decreased the blood glucose, hypertriglyceridemia, and hypercholesterolemia levels as well as increased the production of insulin and HDL-C at the doses of 250 and 500 mg/kg bw during 21 days of treatment (Jong-Anurakkun et al. 2007; Kumar et al. 2011a, b). In another experiment, three compounds (quercetin, β-sitosterol, and stigmasterol) isolated from the ethyl acetate fraction of this extract were found to reduce the blood glucose level of type 2 STZ-nicotinamide-induced diabetic mice which was comparable to standard drug glibenclamide (Kumar et al. 2013). Later, similar activity was performed by the extract of D. indica fresh leaves assayed on STZ-induced diabetic rats. Further investigation of active constituent of this extract led to the isolation of 3,5,7-trihydroxy-2-(4-hydroxy-benzyl)-chroman-4-one, which significantly demonstrated antidiabetic activity by reducing blood glucose, cholesterol, and triglycerides levels. The treatment also increased the levels of insulin, HDL-C, as well as body weight when compared with diabetic rats. Histopathological study showed that treatment with the extract and 3,5,7-Trihydroxy-2-(4-hydroxy-benzyl)-chroman-4-one restored the hyperglycemic conditions and kidney structure abnormality owing to oxidative stress in the diabetic rats (Kaur et al. 2016). The alcoholic extract of the fresh leaves assayed in vivo on STZ-induced diabetic rats reduced levels of blood glucose, cholesterol, and triglycerides at doses of 100, 200, and 400 mg/kg bw for 21 days of treatment, comparable to glimepiride (10 mg/kg bw). The extract significantly increased the body weight, serum insulin and HDL-C levels (Kaur et al. 2016). These findings well supported the traditional use of D. indica for the treatment of diabetes among Indian natives.


Anti-inflammatory and Antinociceptive Activity

Many of D. indica extracts were tested for anti-inflammatory and antinociceptive activities. The alcoholic extract of D. indica leaves obliterated carrageenan-induced paw edema at doses of 200 and 400 mg/kg bw with the impact comparable to indomethacin (10 mg/kg bw) (Yeshwante et al. 2009a, b). Moreover, the methanol extract of the leaves and its nonpolar fractions assayed on acetic acid-induced colitis mice at doses of 200 and 800 mg/kg bw restored the colon weight and macroscopic damage in acetic acid-induced colitis in mice. The non-polar fractions also attenuated the production of tumor necrosis factor alpha (TNF-α) and myeloperoxidase released from azurophilic granules of neutrophils (Somani et al. 2014). On the other hand, the glycolic extract and emulsion of D. indica fruit were not found suitable to accelerate wound healing process on skin injuries made in rats (Miglianto et al. 2011). The alcoholic extracts of the leaf and stem bark of D. indica were examined for antinociceptive activity using the hot plate method, tail immersion test, and writhing model in mice induced by acetic acid and found to exhibit central and peripheral analgesia (Bose et al. 2010; Yeshwante et al. 2011; Alam et al. 2012). In particular, the methanol extract of the leaves was evaluated on acetic acid-induced writhing mice at doses of 250 and 500 mg/kg bw which obliterated the writhing behavior by 48.82% and 55.88% inhibition comparable to that of diclofenac (60% at 25 mg/kg bw) (Bose et al. 2010). Furthermore, the methanol extract of the leaves measured by hot tail, tail immersion, formalin-induced nociception, and acetic acid-induced writhing model on mice at doses of 400 mg/kg bw considerably exhibited central and peripheral analgesia when comparable to those of the standard drugs, pentazocine (15 mg/kg bw) and indomethacin (20 mg/kg bw) (Yeshwante et al. 2011). Later, the methanol extract of the stem bark was evaluated using hot plate method, tail immersion test, and acetic acid-induced writhing model in mice at doses of 200 and 400 mg/kg bw that demonstrated dose-dependent analgesic activity comparable to those of the standard drugs nalbuphine (10 mg/kg bw) and diclofenac sodium (10 mg/kg bw) (Alam et al. 2012).


Antioxidant Activity

Flavonoids, terpenoids, tannins, and phenolics in D. indica plants are major compounds responsible for primary antioxidants or free radical scavenging effects (Polterai 1997). A compound 3,5,7-trihydroxy-2-(4-hydroxy-benzyl)-chroman-4-one isolated from D. indica displayed remarkable antioxidant property when assayed on 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), hydrogen peroxide, and superoxide radicals as well as ferric ion. This compound also elevated the production of antioxidant enzymes (superoxide dismutase and glutathione) in streptozocin (STZ)-induced diabetic rats. Treatment with this compound remarkably reduced the level of lipid peroxidation marker, i.e., thiobarbituric acid-reactive substances (TBARS) in diabetic rats (Kaur et al. 2016). In an experiment, methanol, ethyl acetate, and aqueous extracts of the fruit reduced molybdenum (IV) to molybdenum (V) with the capacity of 1904.80, 1067.00, and 594.60 mmol/g of extract, respectively, when compared to ascorbic acid. The extracts also exhibited DPPH free radical scavenging activity over the concentration range of 25–100 mg/mL with the activity in order of methanol extract > ethyl acetate extract > water extract. The extracts when evaluated on β-carotene bleaching produced antioxidant activity with the capacity of 80.20, 55.50, and 45.50%, respectively, at 100 mg/mL when compared to BHA (97.50%) (Abdille et al. 2005). In another experiment, the aqueous acetone extract of the stem bark reduced molybdenum (IV) to molybdenum (V) with capacity of 3.12 mmol/g of extract at 50 mg/mL as compared to ascorbic acid and exhibited DPPH and superoxide radical scavenging activity causing 90.90% and 31.73% inhibition at 25 and 50 mg/mL which were found to be comparable of BHA (91.00%) and gallic acid (47.73%), respectively. The extract also assayed using hydroxyl radical-induced deoxyribose damage which showed radical scavenging activity with percentage inhibition of 53.90–74.66% at 100–500 mg/mL (Deepa and Jena 2011). Furthermore, the ethanol extract of the leaves assayed in vitro by DPPH, hydroxyl, and hydrogen peroxide radicals displayed antioxidant activity with IC50 of 34.80, 64.40, and 51.00 mg/mL, respectively, as compared to ascorbic acid with IC50 of 24.00, 48.00, and 34.40 mg/mL, respectively. The extract also measured using ferric-reducing antioxidant power (FRAP) assay caused the reduction of ferric ion as compared with ascorbic acid (Shendge et al. 2011). Later, similar extract also evaluated in vivo on doxorubicin-induced rats that restored the levels of GSH and cardiac malondialdehyde (MDA) at doses of 250 and 500 mg/kg bw (Shendge and Gadge 2012). In another experiment on Swiss albino mice, the methanol extract of the stem bark reduced the production of ROS in kidney cells with IC50 of 34.72 mg/mL as compared to trolox (IC50 8.66 mg/mL) (Alam et al. 2012). Further, Singh et al. (2012) also demonstrated that methanol, acetone, and water extracts of the stem bark measured by DPPH radical produced antioxidant activity with IC50 values of 188.08, 177.42, and 163.68 mg/mL of fresh mass, respectively. It was also investigated that the methanol extract of the leaves and its nonpolar fractions reduced the level of MDA and, however, enhanced the levels of the antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) in acetic acid-induced colitis at doses of 200 and 800 mg/kg (Somani et al. 2014). Interestingly, a compound proanthocyanidins isolated from D. indica fresh fruit produced significant antioxidant activity measured by FRAP and oxygen radical absorbance capacity (ORAC) assays with values of 2.32 × 103 mmol Fe(II)/g and 1.06 × 104mmol trolox equivalent/g (Fu et al. 2015). Lastly, the alcoholic extract of the fresh leaves obtained from sequential extraction with petroleum ether, chloroform, alcohol, and aqueous alcohol (40%) exhibited free radical scavenging activity toward DPPH, hydrogen peroxide, and superoxide radicals with IC50 of 2.98, 228.69, and 75.09 mg/mL, respectively, and ferric-reducing antioxidant power with EC50 of 111 mg/mL. In the similar experiment, it was also investigated that the extract enhanced the production of antioxidant enzymes (SOD and GSH) in STZ-induced diabetic rats at doses of 100, 200, and 400 mg/kg bw after 21 days of treatment when compared to glimepiride at 10 mg/kg bw (Kaur et al. 2016).


Antimicrobial Activity

D. indica was investigated for antibacterial, antifungal, and antiviral activities. The extracts and fractions of D. indica were documented to show growth inhibition against Gram-positive and Gram-negative bacteria. However, in comparison to bacteria, they attenuated the fungi including Aspergillus fumigatus, Aspergillus niger, Penicillium sp., Candida albicans, Candida krusei, Rhizopus oryzae, Saccharomyces cerevisiae, and Trichoderma viride (Nick et al. 1995a, b; Wiart et al. 2004; Haque et al. 2008; Apu et al. 2010; Smitha et al. 2012). Betulinic acid isolated from D. indica has proven antimicrobial activity (Nick et al. 1994, 1995a, b; Ragasa et al. 2009). Meanwhile, a few nonpolar fractions (chloroform, carbon tetrachloride, and hexane) of the methanol extract of the leaves weakened the growth of Escherichia coli, Bacillus cereus, Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Pseudomonas aeruginosa, Vibrio mimicus, Vibrio parahemolyticus, Salmonella typhi, Salmonella paratyphi, Shigella boydii, and Shigella dysenteriae and fungal inhibition of A. niger, C. albicans, and S. cerevisiae with inhibition zones ranging from 6 to 8 mm at 400 mg/disc when compared with kanamycin (30 mg/disc; 30–40 mm) (Apu et al. 2010). In another experiment, hexane, dichloromethane, and ethyl acetate fractions of the methanol extract of the stem bark inhibited the growth of E. coli, B. cereus, B. subtilis, S. aureus, S. lutea, P. aeruginosa, V. mimicus, V. parahemolyticus, S. paratyphi, S. typhi, and S. dysenteriae with minimum inhibitory concentration (MIC) ranging from 0.31 to 20.00 mg/mL as compared to those of kanamycin (30 mg/disc; 22–30 mm) and amoxicillin (10 mg/disc; 14–22 mm). These fractions also attenuated the growth of A. niger, C. albicans, and S. cerevisiae with the inhibitory zones ranging from 7 to 13 mm as compared to ketoconazole (50 mg/disc; 19–23 mm) (Alam et al. 2011). Jaiswal et al. (2014) concluded that the aqueous acetone (70%) extract of the fruit and stem bark inhibited the growth of food-borne pathogens (B. cereus, S. aureus, Yersinia enterocolitica, and E. coli) with minimum inhibitory concentration ranging from 1.25 to 10.00 mg/mL. These findings suggest that D. indica has a powerful potential as antimicrobial agent, which supports it as traditional therapeutic remedy against the diseases caused by microbial infection, like diarrhea, dysentery, septicemia, and skin diseases.


Antidiarrheal Activity

In an experiment, castor oil-induced mice were used to check the antidiarrheal activity of D. indica. The aqueous and methanolic extracts of the leaves prolonged the onset and reduced the total number of feces after 2 h of treatment at doses of 200 and 400 mg/kg bw (Yeshwante et al. 2009a, b). The polar extracts of the leaf and fruit caused the prolongation of onset and curtailment in defecation frequency in the treated mice. The assay of extracts using charcoal meal revealed that it had a capacity to reduce the motility of the gastrointestinal tract (Yeshwante et al. 2009a, b; Bose et al. 2010; Rahman et al. 2011a, b). Further, the methanol extract of the leaves significantly diminished the frequency of defecation and number of total stool count at a dose of 500 mg/kg bw as compared to loperamide (25 mg/kg bw; 77.22%) (Bose et al. 2010). Ethanol extracts of the fruit and leaves minimized the total number of wet feces and also decreased the motility of gastrointestinal tract in castor oil-induced diarrheal mice at doses of 200 and 400 mg/kg bw when compared with loperamide (5 mg/kg bw) (Rahman et al. 2011b). The antidiarrheal action of this plant is suggested due to inhibition of inflammatory mediators by flavonoids and tannins (Yeshwante et al. 2009a, b).


Antiprotozoal Activity

Antiprotozoal activities of D. indica against malaria and leishmaniasis have been tested. Cyclohexane fraction of ethanolic extract of D. indica leaves was reported to inhibit the growth of parasite Plasmodium falciparum. In this experiment, cyclohexane fraction of the 80% ethanol extract of the leaves exhibited 53% inhibition against parasite P. falciparum at a concentration of 10 mg/mL as compared to chloroquione (Nguyen-Pouplin et al. 2007).


Antimutagenic Activity

Mutations are the cause of innate metabolic defects in cellular mechanism which trigger initiation and progression of several human diseases including cancer. The antimutagenic and protective effect has been ascribed to many classes of phytochemicals preferably flavanoids and phenolic compounds (Aqil et al. 2008). Meanwhile, Jaiswal et al. (2014) found that 70% aqueous acetone extract of the stem bark of D. indica demonstrated antimutagenic activity against sodium azide-induced mutation in Salmonella tester strain (TA-1531).


Anticholinergic Activity

Anticholinergics generally inhibit the action of acetylcholine from binding to its receptor sites on certain nerve cells and block parasympathetic nerve impulses. Bhadra et al. (2014) found that the standardized methanol extract of the fruit of D. indica inhibited acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) activity with IC50 values of 67.26 and 122.39 mg/mL, respectively.


Protoscolicidal Activity

The scolicidal agents are generally employed in surgical manipulation of the hydatid cysts in hydatid diseases (García et al. 1997). Chowdhury et al. (2013) investigated the protoscolicidal activity in the stem bark of D. indica where an assay of the methanolic extract of the stem of D. indica was performed on earthworm Pheretima posthuma, and the result demonstrated the paralysis (194–136 min) and death (237–176 min) of the worms at 10–25 mg/mL comparable to albendazole at 10 mg/mL.


Hemolytic Activity

Hemolytic activity of any compounds is a measure of general cytotoxicity toward normal healthy cells (Da Silva et al. 2004). This activity was investigated by Jaiswal et al. (2014) in D. indica plant where the aqueous acetone (70%) extract of the fruit and stem bark of D. indica was assayed using rat whole blood which exhibited low inhibition against erythrocytes.


Hair Treatment Activity

On the basis of the previous information that keratin is the main component and mechanical strength of the hair, an experiment was performed where the aqueous extract of the mucilaginous D. indica seed sap protected human hair from loss of keratin after treatment with 10 mg hair/1 mL for 12 h. The physical structure of hair and keratin degradation were further affirmed by Fourier transform infrared spezctroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy
(SEM) analysis, and a good hair weaving activity was noticed (Saikia 2013).


Enzyme Inhibitory Activity

Inhibition is one major mechanism for physiological enzyme regulation. Further, enzyme inhibition has a number of medicinal significances, and a large number of drugs generally act by the mechanism involving enzyme inhibition. In this view Jong-Anurakkun et al. (2007) performed an experiment to assure whether D. indica has an enzyme inhibitory action. As a result, the 50% aqueous methanolic extract of the leaves attenuated the intestinal sucrose and maltase activity with percentage inhibition of 40% and 56%, respectively.


Toxicology of D. indica

Several types of extracts of D. indica were tested for their toxicity action against Artemia salina. Despite the toxicity, some extracts of D. indica were found nontoxic (Kumar et al. 2010) and exhibited ameliorative (Shendge and Gadge 2012) and hepatoprotective (Padhya et al. 2008; Himakar et al. 2010) actions when assayed using in vivo models. The ethanolic extract of the leaves restored the level of myocardial enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), and creatine phosphokinase (CK) on myocardium of doxorubicin-induced rats at doses of 250 and 500 mg/kg bw (Shendge and Gadge 2012). However, the ethanolic extract of the leaves reduced the levels of serum AST, ALT, ALP, bilirubin, and lipid peroxidation in the the liver induced by carbon tetrachloride at a dose of 300 mg/kg bw (Padhya et al. 2008). The nonpolar hexane extract of the seeds decreased the levels of serum enzymes, bilirubin, urea, creatinine, and lipid peroxidation but increased the levels of SOD,CAT, glutathione reductase (GR),
glutathione peroxidase (GPx), and glutathione S-transferase (GST) in CCl4-induced rats at doses of 250 and 500 mg/kg bw (Himakar et al. 2010). Besides these, D. indica has been used as food poisoning neutralizer (Islam et al. 2014; Grosvenor et al. 1995a, b) which also evidenced that D. indica is safe and not toxic. The methanolic extract of the leaves was nontoxic and did not produce any mortality in mice during 24 h of treatment with 100–1500 mg/kg bw of extract by intraperitoneal
administration (Kumar et al. 2010). Apart from this, water, chloroform, carbon tetrachloride, and n-hexane fractions of methanol extract of the leaves demonstrated lethality on brine shrimp as compared to vincristine sulfate (Apu et al. 2010). However, the methanol, ethyl acetate, dichloromethane, and n-hexane extracts of the stem bark exhibited inhibition on brine shrimp with less lethality when compared to the leaf extracts (Parvin et al. 2009; Alam et al. 2011; Chowdhury et al. 2013).


D. indica in Drug Formulation and Drug Delivery

The mucilage obtained from seeds of D. indica fruit contains a natural mucoadhesive hydrophilic polymer, which is generally used in the formulation for drug delivery (Sharma et al. 2009; Bal et al. 2012a, b). The mucoadhesive and viscous properties of mucilage of D. indica fruit were used as better substitute of synthetic polymers, i.e., Carbopol 934 (Kuotsu and Bandyopadhyay 2007; Bal et al. 2012b) and hydroxylpropyl methyl cellulose. Novel mucoadhesive buccal tablets of oxytocin and formulation of nasal gels were prepared from D. indica (Kuotsu and Bandyopadhyay 2007; Metia and Bandyopadhyay 2008). Bal et al. (2012a, b) developed a mucoadhesive carvedilol microcapsule using the mucilage obtained from seeds of D. indica for encapsulation purpose. This microcapsule was found to be free flowing and usually spherical in shape. It was concluded that this mucilage was effective for sustained drug release, which can be employed to reduce the hypertension for a period of 24 h. Further, Sharma et al. (2013) conducted an experiment where they encapsulated pantoprazole sodium and metformin hydrochloride, respectively, using this mucilage. Good swelling properties and mucoadhesivity was found to perform at the intestinal pH. This finding suggested that the seed mucilage of D. indica has good potency for the purpose of drug encapsulation (Sharma et al. 2010). Nanoparticles are being extensively used as drug carrier for the treatment of diseases nowadays. Singh et al. (2013) prepared colloidal silver nanoparticles (SNP) using the aqueous extract of D. indica fruits as reducing agent and as a better substitute of sodium borohydride. This extract reduced AgNO3 to silver nanoparticles with stability more than 6 days, which suggested that D. indica could be employed as natural reducing agent for silver nanoparticles loaded formulation.


Future Prospects

Despite a broad range of medicinal properties of D. indica, very few investigations regarding chemical constituents and pharmacological aspects have been carried out. There is little evidence over the quantification of different active phytoconstituents responsible for important pharmacological activities. It is evident from the available literature that D. indica possesses adequate therapeutic potential and need to be explored further for chemical and pharmacological investigations. Current knowledge of D. indica shows great lacunae that need more biological investigations to be done on its plant extracts. Hence, further studies are highly required to explore the potential of its plant extracts against various diseases and search for molecular mechanisms underlying their action. Future studies are also required to evaluate the adverse effects, safety profile, and different biological activities of extracts as well as particular chemical constituents from D. indica in order to facilitate their clinical applications as modern medicines for human health.


Conclusion

Herbal medicines are the most extensively used therapeutics worldwide. To promote their proper use and to establish their potential as sources for new drugs, it is necessary to study medicinal plants having folklore reputation in a better and intensified way. The extensive literature survey as well as research reports revealed that D. indica is highly regarded to have good potential in the herbal medicine. Betulin and betulinic acid are the major constituents found to be present in almost all parts of this plant which can cure various human ailments and diseases. As the raw fruits are eaten by tribal communities, the juice of D. indica may be taken as energy drink due to their good nutritional value. It has previously been confirmed that D. indica have curing properties in wound healing, diabetes, cuts and burns, abdominal pains, and many more, but scientific evidence of these reports is yet not much developed. Various pharmacological investigations have been done using different plant parts such as leaves which have various activities like antioxidant, cytotoxic, antimicrobial, antidiarrheal, and anxiolytic, seeds which are hepatoprotective and antimicrobial, and fruits which are antileukemic. Despite a few toxicity reports, D. indica and most of its extracts were found to be non-toxic and exhibited ameliorative and hepatoprotective activities in several in vivo studies. The ethnopharmacological use of D. indica as food poisoning neutralizer also indicates its better safety profile and non-toxic nature. The current status of D. indica demands some biotechnological investigations including protein and gene expression for target identification and exploration of molecular mechanisms underlying the action at molecular levels.

Acknowledgments The authors are grateful to the Vice Chancellor of Babasaheb Bhimrao
Ambedkar University, Lucknow, India, for the support.


References

Abdille, M. H., Sigh, R. P., Jayaprakasha, G. K., & Jena, B. S. (2005). Antioxidant activity of the extracts from Dillenia indica fruits. Food Chemistry, 90, 891–896.

Akter, R., Uddin, S. J., Grice, I. D., & Tiralongo, E. (2014). Cytotoxic activity screening of Bangladeshi medicinal plant extracts. Journal of Natural Medicines, 68, 246–252.

Alam, M. D., Chowdhury, N. S., Mazumder, M. E. H., & Haque, M. E. (2011). Antimicrobial and toxicity study of different fractions of Dillenia indica Linn. bark extract. International Journal of Pharmaceutical Sciences and Research, 2, 860–866.

Alam, B. M., Rahman, M. S., Hasan, M., Khan, M. M., Nahar, K., & Sultana, S. (2012).

Antinociceptive and antioxidant activities of the Dillenia indica bark. International Journal of Pharmacology, 8, 243–253.

Angami, A., Gajurel, P. R., Rethy, P., Singh, B., & Kalita, S. K. (2006). Status and potential of wild edible plants of Arunachal Pradesh. The Indian Journal of Traditional Knowledge, 5, 541–550.

Anisuzzaman, M., Rahman, A. H. M. M., Harun-Or-Rashid, M., Naderuzzaman, A. T. M., & Islam, A. K. M. R. (2007). An ethnobotanical study of Madhupur, Tangail. Journal of Applied Sciences Research, 3, 519–530.

Apu, A. S., Muhit, M. A., Tareq, S. M., Pathan, A. H., Jamaluddin, A. T. M., & Ahmed, M. (2010). Antimicrobial activity and brine shrimp lethality bioassay of the leaves extract of Dillenia indica Linn. Journal of Young Pharmacists, 2(1), 50–53.

Aqil, F., Zahin, M., & Ahmad, I. (2008). Antimutagenic activity of methanolic extracts of four ayurvedic medicinal plants. Indian Journal of Experimental Biology, 46(9), 668–672.

Armania, N., Yazan, L. S., Ismail, I. S., Foo, J. B., Tor, Y. S., Ishak, N., Ismail, N., & Ismail, M. (2013a). Dillenia suffruticosa extract inhibits proliferation of human breast cancer cell lines (MCF-7 and MDA-MB-231) via induction of G2/M arrest and apoptosis. Molecules, 18, 13320–13339.

Armania, N., Yazan, L. S., Musa, S. N., Ismail, I. S., Foo, J. B., Chan, K. W., Noreen, H., Hisyam, A. H., Zulfahmi, S., & Ismail, M. (2013b). Dillenia suffruticosa exhibited antioxidant and cytotoxic activity through induction of apoptosis and G2/M cell cycle arrest. Journal of Ethnopharmacology, 146, 525–535.

Azam, M. N. K., Rahman, M. M., Biswas, S., & Ahmed, M. N. (2016). Appraisals of Bangladeshi medicinal plants used by folk medicine practitioners in the prevention and management of malignant neoplastic diseases. International Scholarly Research Notices. https://doi.org/10.1155/2016/7832120.

Bal, T., Murthy, P. N., & Pandey, A. (2012a). Evaluation of mucoadhesive carvedilol microcapsules prepared using orifice gelatin technique. Journal of Pharmacy Research, 5(1), 519–525.

Bal, T., Murthy, P. N., & Sengupta, S. (2012b). Isolation and analytical studies of mucilage obtained from the seeds of Dillenia indica (family Dilleniaceae) by use of various analytical techniques. Asian Journal of Pharmaceutical and Clinical Research, 5(3), 65–68.

Banerji, N., Majumder, P., & Dutta, N. L. (1975). New pentacyclic triterpene lactone from Dillenia indica. Phytochemistry, 14, 1447–1448.

Bate-Smith, E. C., & Harborne, J. B. (1971). Differences in flavonoid content between fresh and herbarium leaf tissue in Dillenia. Phytochemistry, 10, 1055–1058.

Bhat, P., Hegde, G. R., Hegde, G., & Mulgund, G. S. (2014). Ethnomedicinal plants to cure skin diseases- an account of the traditional knowledge in the coastal parts of Central Western Ghats, Karnataka, India. The Journal of Ethnopharmacology, 151, 493–502.

Bhattacharjee, S. R., & Chatterjee, A. (1962). Betulinic acid and betulin, the triterpenoid constituents of Dillenia indica. Journal of the Indian Chemical Society, 39, 276–284.

Boer, H. J., Lamxay, V., & Bjork, L. (2012). Comparing medicinal plant knowledge using similarity indices, a case of the Brou, Saek and Kry in Lao PDR. Journal of Ethnopharmacology, 141, 481–500.

Bose, U., Gunasekaran, K., Bala, V., & Rahman, A. A. (2010). Evaluation of phytochemical and pharmacological properties of Dillenia indica Linn. Leaves. Journal of Pharmacology and Toxicology, 10(5), 222–228.

Chowdhury, M. I., Dewan, S. M. R., Ahamed, S. K., Moghal, M. M. R., & Ahmed, J. (2013). Biological activities of Dillenia indica L. bark growing in Bangladesh. Journal of Biological & Scientific Opinion, 1(2), 45–49.

Da Silva, E., Shahgaldian, P., & Coleman, A. W. (2004). Haemolytic properties of some water-soluble para-sulphonato-calix-(n)-arenes. International Journal of Pharmaceutics, 273, 57–62.

Dan, S., & Dan, S. S. (1980). Triterpenoids of Indian Dilleniaceae. Journal of the Chemical Society, 57, 760.

Das, A. K., Dutta, B. K., & Sharma, G. D. (2008). Medicinal plants used by different tribes of Cachar district Assam. The Indian Journal of Traditional Knowledge, 7(3), 446–454.

Das, S., Khan, M. L., Rabha, A., & Bhattacharjya, D. K. (2009). Ethnomedicinal plants of Manas National Park, Assam, Northeast India. The Indian Journal of Traditional Knowledge, 8, 514–517.

Deepa, N., & Jena, B. S. (2011). Antioxidant fraction from bark of Dillenia indica. International Journal of Food Properties, 14, 1152–1159.

Dickison, W. C. (1979). A note on the wood anatomy of Dillenia(Dilleniaceae). IAWA Bulletin, 2–3, 57–60.

Dubey, P. C., Sikarwar, R. L. S., Khanna, K. K., & Tiwari, A. P. (2009). Ethnobotany of Dillenia pentagyna Roxb. in Vindhya region of Madhya Pradesh, India. Natural Product Radiance, 8(5), 546–548.

Fu, C., Yang, D., Peh, W. Y. E., Lai, S., Feng, X., & Yang, H. (2015). Structure and antioxidant activities of proanthocyanidins from elephant apple (Dillenia indica Linn.). Journal of Food Science, 80(10), 2191–2199.

García, J. I. L., Alonso, E., Gonzalez-Uriarte, J., & Romano, D. R. (1997). Evaluation of scolicidal agents in an experimental hydatid disease model. European Surgical Research, 29(3), 202–208.

Grosvenor, P. W., Gothard, P. K., McWilliam, N. C., Supriono, A., & Gray, D. O. (1995a). Medicinal plants from Riau Province, Sumatra, Indonesia. Part 1 uses. The Journal of Ethnopharmacology, 45, 75–95.

Grosvenor, P. W., Supriono, A., & Gray, D. O. (1995b). Medicinal plants from Riau Province, Sumatra, Indonesia. Part 2, antibacterial and antifungal activity. Journal of Ethnopharmacology, 45, 97–111.

Haque, M. E., Islam, M. N., Hossain, M., Mohamad, A. U., Karim, M. F., & Rahman, M. A. (2008). Antimicrobial and cytotoxic activities of Dillenia pentagyna. Dhaka Univ. Journal of Pharmaceutical Sciences, 7(1), 103–105.

Hazarika, T. K., Marak, S., Mandal, D., Upadhyaya, K., Nautiyal, B. P., & Shukla, A. C. (2016). Underutilized and unexploited fruits of Indo-Burma hot spot, Meghalaya, north-east India: Ethno-medicinal evaluation, socio-economic importance and conservation strategies. Genetic Resources and Crop Evolution, 63(2), 289–304.

Himakar, R. K., Tharanath, V., Nagi, R. K. B., Sharma, P. V. G. K., & Reddy, O. V. S. (2010). Studies on hepatoprotective effect of hexane extract of Dillenia indica against CCl4 induced toxicity and its safety evaluation in Wistar albino rats. RJPBCS, 1(3), 441–450.

Islam, M. K., Saha, S., Mahmud, I., Mohamad, K., Awang, K., Uddin, S. J., Rahman, M. M., & Shilpi, J. A. (2014). An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area Bangladesh. The Journal of Ethnopharmacology, 151, 921–930.

Jaiswal, S., Mansa, N., Prasad, M. S. P., Jena, B. S., & Negi, P. S. (2014). Antibacterial and antimutagenic activities of Dillenia indica extracts. Food Bioscience, 5, 47–53.

Jong-Anurakkun, N., Bhandari, M. R., & Kawabata, J. (2007). α-Glucosidase inhibitors from Devil tree (Alstonia scholaris). Food Chemistry, 103, 1319–1323.

Kagyung, R., Gajurel, P. R., Rethy, P., & Singh, B. (2010). Ethnomedicinal plants used for gastro-intestinal diseases by Adi tribes of Dehang-Debang biosphere reserve in Arunachal Pradesh. The Indian Journal of Traditional Knowledge, 9(3), 496–501.

Kalita, D., & Deb, B. (2004). Some folk medicines used by the Sonowal Kacharis tribe of the Brahmaputra valley Assam. Natural Product Radiance, 3(4), 240–246.

Kar, A., & Borthakur, S. K. (2007). Wild vegetables sold in local markets of Karbi Anglong Assam. The Indian Journal of Traditional Knowledge, 6(1), 169–172.

Kaur, N., Kishore, L., & Singh, R. (2016). Antidiabetic effect of new chromane isolated from Dillenia indica L. leaves in streptozotocin induced diabetic rats. Journal of Functional Foods, 22, 547–555.

Kerrigan, R. A., Craven, L. A., & Dunlop, C. R. (2011). Dilleniaceae. In P. S. Short & I. D. Cowie (Eds.), Flora of the Darwin region (pp. 1–6). Palmerston: Northern Territory Government. Khanum, A., Khan, I., & Ali, A. (2007). Ethnomedicine and human welfare. Ukaaz Publications, 4, 52.

Khare, C. P. (2007). Indian medicinal plants (Vol. 214). Berlin: Springer.

Khongsai, M., Saikia, S. P., & Kayang, H. (2011). Ethnomedicinal plants used by different tribes of Arunachal Pradesh. The Indian Journal of Traditional Knowledge, 10(3), 541–546.

Kirtikar, K. R., & Basu, B. D. (2003). Indian medicinal plants. Oriental Enterprizes, Dehradun, 1, 75–77.

Kumar, D., Mallick, S., Vedasiromoni, J. R., & Pal, B. C. (2010). Anti-leukemic activity of Dillenia indica L. fruit extract and quantification of betulinic acid by HPLC. Phytomedicine, 17, 431–435.

Kumar, S., Kumar, V., & Prakash, O. (2011a). Antidiabetic and hypolipidemic activities of Dillenia indica extract in diabetic rats. Chinese Journal of Integrative Medicine, 9(5), 570–574.

Kumar, S., Kumar, V., & Prakash, O. (2011b). Antidiabetic and antihyperlipidemic effects of Dillenia indica (L.) leaves extract. Brazilian Journal of Pharmaceutical Sciences, 47(2), 373–378.

Kumar, S., Kumar, V., & Prakash, O. (2013). Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica. BioMed Research International, 2013, 1–7.

Kuotsu, K., & Bandyopadhyay, A. K. (2007). Development of oxytocin nasal gel using natural mucoadhesive agent obtained from the fruits of Delliniaindica L. Science Asia, 33, 57–60.

Lalfakzuala, R., Lalramnghinglova, H., & Kayang, H. (2007). Ethnobotanical usages of plants in western Mizoram. The Indian Journal of Traditional Knowledge, 6, 486–493.

Majumdar, K., Saha, R., Datta, B. K., & Bhakta, T. (2006). Medicinal plants prescribed by different tribal and non-tribal medicine men of Tripura state. The Indian Journal of Traditional Knowledge, 5(4), 559–562.

Metia, P. K., & Bandyopadhyay, A. K. (2008). In vitro and in vivo evaluation of a novel mucoadhesive buccal oxytocin table prepared with Dillenia indica fruit mucilage. Pharmazie, 63, 270–274.

Miglianto, K. F., Chiosini, M. A., Mendonça, F. A. S., Esquisatto, M. A. M., Salgado, H. R., & Santos, G. M. T. (2011). Effect of glycolic extract of Dillenia indica L. combined with microcurrent stimulation on experimental lesions in Wistar rats. Wounds, 23(5), 111–120.

Muhit, A. M., Tareq, S. M., Apu, A. S., Basak, D., & Islam, M. S. (2010). Isolation and identification of compounds from the leaf extract of Dillenia indica Linn. Bangladesh Pharmaceutical Journal, 13(1), 49–53.

Mukherjee, K. S., & Badruddoza, S. (1981). Chemical constituents of Dillenia indica Linn. and Vitex negundo Linn. Journal of the Indian Chemical Society, 58, 97–98.

Nguyen-Pouplin, J., Tran, H., Phan, T. A., Dolecek, C., Farrar, J., Tran, T. H., Caron, P., Bodo, B., & Grellier, P. (2007). Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. Journal of Ethnopharmacology, 109, 417–427.

Nick, A., Wright, A. D., Sticher, O., & Rali, T. (1994). Antibacterial triterpenoid acids from Dillenia papuana. Journal of Natural Products, 57, 1245–1250.

Nick, A., Rali, T., & Sticher, O. (1995a). Biological screening of traditional medicinal plants from Papua New Guinea. Journal of Ethnopharmacology, 49, 147–156.

Nick, A., Wright, A. D., Rali, T., & Sticher, O. (1995b). Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships. Phytochemistry, 40, 1691–1695.

Ozdemir, E., & Alpınar, K. (2015). An ethnobotanical survey of medicinal plants in western part of central Taurus Mountains: Aladaglar (Nigde-Turkey). Journal of Ethnopharmacology, 166, 53–65.

Padhya, I. P., Choudhary, N. S., Padhy, S. K., & Das, S. (2008). Effect of Dillenia indica leaves against carbon tetrachloride induced hepatotoxicity. Journal of Pharmacy and Chemistry, 2, 190–193.

Parvin, M. N., Rahman, M. S., Islam, M. S., & Rashid, M. A. (2009). Chemical and biological investigations of Dillenia indica Linn. Bangladesh Journal of Pharmacology, 4, 122–125.

Pavanasasivam, G., & Sultanbawa, M. U. S. (1975a). Flavonoids of some Dilleniaceae species. Phytochemistry, 14, 1127–1128.

Pavanasasivam, G., & Sultanbawa, M. U. S. (1975b). Chemical investigation of Ceylonese plants. XII. (+)-3,4′,5,7-tetrahydroxy-3′-methoxyflavanone ((+)-dihydroisorhamnetin) and 3,5,7-trihydroxy-3′,4′-dimethoxyflavone (dillenetin), two new natural products from Dillenia indica. Journal of the Chemical Society, 6, 612–613.

Pavani, M., Rao, M. S., Nath, M. M., & Rao, C. A. (2012). Ethnobotanical explorations on anti-diabetic plants used by tribal inhabitants of Seshachalam forest of Andhra Pradesh, India. Indian Journal of Fundamental and Applied Life Sciences, 2(3), 100–105.

Polterai, O. (1997). Antioxidants and free-radical scavengers of natural origin. Current Organic Chemistry, 1, 415–440.

Poonam, K., & Singh, G. S. (2009). Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc landscape, India. The Journal of Ethnopharmacology, 123, 167–176.

Pradhan, B. K., & Badola, H. K. (2008). Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. Journal of Ethnobiology and Ethnomedicine, 4, 22.

Prasad, P. R. C., Reddy, C. S., Raza, S. H., & Dutt, C. B. S. (2008). Folklore medicinal plants of North Andaman Islands, India. Fitoterapia, 79, 458–464.

Purkayastha, J., Nath, S. C., & Islam, M. (2005). Ethnobotany of medicinal plants from Dibru-Saikhowa biosphere reserve of Northeast India. Fitoterapia, 76, 121–127.

Quattrocchi, U. F. L. S. (2012). CRC world dictionary of medicinal and poisonous plants (pp. 1407–1408). New York: CRC Press. Ragasa, C. Y., Alimboyoguen, A. B., & Shen, C.-C. (2009). Antimicrobial triterpenes from Dillenia philippinensis. The Philippine Scientist, 46, 78–87.

Rahman, M. D., Rahman, M., Islam, M. M., & Reza, M. S. (2011a). The importance of forests to protect medicinal plants, a case study of Khadimnagar National Park, Bangladesh. IJBSESM, 7, 283–294.

Rahman, M. S., Shams-Ud-Doha, K. M., & Rahman, R. (2011b). Antidiarrhoeal activity of the leaf and fruit extracts of Dillenia indica. International Journal of Biosciences, 1(6), 39–46.

Rai, P. L., & Lalramnghinglova, H. (2010). Ethnomedicinal plant resources of Mizoram, India, implication of traditional knowledge in health care system. Ethnobotanical Leaflets, 14, 274–305.

Ripunjoy, S. (2013). Indigenous knowledge on the utilization of medicinal plants by the Sonowal Kachari Tribe of Dibrugarh district in Assam, North-East India. International Research Journal of Biological Sciences, 2(4), 44–50.

Saikia, J. P. (2013). Hair waving natural product: Dillenia indica seed sap. Colloids and Surfaces. B, Biointerfaces, 102, 905–907.

Saikia, A. P., Ryakala, V. K., Sharma, P., Goswami, P., & Bora, U. (2006). Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. Journal of Ethnopharmacology, 106, 149–157.

Sarker, M. M. R., Nimmi, I., & Kawsar, M. H. (2012). Preliminary screening of six popular fruits of Bangladesh for in vitro IgM production and proliferation of splenocytes. Bangladesh Pharmaceutical Journal, 15(1), 31–37.

Sarmah, R., Adhikari, D., Majumdar, M., & Arunachalan, A. (2008). Traditional medicobotany of Chakma community residing in the Northwestern periphery of Namdapha National Park in Arunachal Pradesh. The Indian Journal of Traditional Knowledge, 7(4), 587–593.

Shah, G. L. (1978). Dillenia indica and Dillenia pentagyna. Flora of Gujarat, 49, 214.

Sharma, U. M., & Pegu, S. (2011). Ethnobotany of religious and supernatural beliefs of the Mishing tribes of Assam with special reference to the 'DoburUie'. Journal of Ethnobiology and Ethnomedicine, 7, 16.

Sharma, H. K., Chhangte, L., & Dolui, A. K. (2001). Traditional medicinal plants in Mizoram, India. Fitoterapia, 72, 146–161.

Sharma, H. K., Sarangi, B., & Pradhan, S. P. (2009). Preparation and in vitro evaluation of mucoadhesive microbeads containing timolol maleate using mucoadhesive substances of Dillenia indica L. Archives of Pharmaceutical Science and Research, 1(2), 181–188.

Sharma, H. K., Pradhan, S. P., & Sarangi, B. (2010). Preparation and in vitro evaluation of enteric controlled release pantoprazole loaded microbeads using natural mucoadhesive substance from Dillenia indica L. International Journal of PharmTech Research, 2(1), 542–551.

Sharma, J., Gairola, S., Gaur, R. D., & Painuli, R. M. (2012). The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India. Journal of Ethnopharmacology, 143, 262–291.

Sharma, H. K., Lahkar, S., & Nath, L. K. (2013). Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources. Acta Pharmaceutica, 63, 209–222.

Shendge, P., & Gadge, M. (2012). Protective effect of Dillenia indica L. on doxorubicin induced cardiotoxicity in rats. International Journal of Drug Discovery and Medical Research, 1(2), 9–13.

Shendge, P., Patil, L., & Kadam, V. (2011). In vitro evaluation of antioxidant activity of Dillenia indica Linn. leaf extract. International Journal of Pharmaceutical Sciences and Research, 2(7), 1814–1818.

Singh, A. K., Raghubanshi, A. S., & Singh, J. S. (2002). Medical ethnobotany of the tribals of Sonaghati of Sonbhadra district, Uttar Pradesh, India. The Journal of Ethnopharmacology, 81, 31–41.

Singh, S., Saikia, J. P., & Buragohain, A. K. (2013). A novel “green” synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids and Surfaces B: Biointerfaces, 102, 83–85.

Singh, D. R., Singh, S., Salim, K. M., & Srivastava, R. C. (2012). Estimation of phytochemicals and antioxidant activity of underutilized fruits of Andaman Islands (India). International Journal of Food Sciences and Nutrition, 63(4), 446–452.

Smitha, V. P., Ch, M. M., Kandra, P., Sravani, R., & Akondi, R. B. (2012). Screening of antimicrobial and antioxidant potentials of Acacia caesia, Dillenia pentagyna and Buchanania lanzan from Maredumilli forest of India. Journal of Pharmacy Research, 5(3), 1734–1738.

Somani, S. J., Badgujar, L. B., Sutariya, B. K., & Saraf, M. N. (2014). Protective effect of Dillenia indica L. on acetic acid induced colitis in mice. Indian Journal of Experimental Biology, 52, 876–881.

Srivastava, B. K., & Pande, C. S. (1981). Chemical examination of bark of Dillenia indica. Acta Cienc Indica, 7(1–4), 170–174.

Srivastava, R. C., Singh, R. K., Community, A., & Mukherjee, T. K. (2010). Indigenous biodiversity of Apatani plateau: Learning on biocultural knowledge of Apatani tribe of Arunachal Pradesh for sustainable livelihoods. The Indian Journal of Traditional Knowledge, 9(3), 432–442.

Sundararamaiah, T., Ramraj, S. K., Rao, K. L., & Vimalabai, M. V. (1976). Isolation of the lupeol group of triterpenes from Dillenia indica Linn. and Diospyros perigrina. Journal of the Indian Chemical Society, 53, 638.

Sunil, K., Vipin, K., & OM, P. (2011). Free radicals scavenging effect of Dillenia indica leaves. Asian Journal of Pharmaceutical and Biological Research, 1, 169–173.

Tag, H., Kalita, P., Dwivedi, P., Das, A. K., & Namsa, N. D. (2012). Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. Journal of Ethnopharmacology, 141, 786–795.

Tarak, D., Namsa, N. D., Tangjang, S., Arya, S. C., Rajbonshi, B., Samal, P. K., & Mandal, M. (2011). An inventory of the ethnobotanicals used as anti-diabetic by a rural community of Dhemaji district of Assam, Northeast India. Journal of Ethnopharmacology, 138, 345–350.

The wealth of India, Raw Materials. (1952). The wealth of India, raw materials (Vol. 3, pp. 64–65). New Delhi: CSIR.

Tiwari, K. P., & Srivastava, S. S. D. (1979). Pigments from the stem bark of Dillenia indica. Planta Medica, 35, 188–190.

Uppalapati, S. L., & Rao, J. T. (1980). Protein analysis of the seeds of Dillenia indica Linn. Journal of the Institution of Chemists, 52, 111–112.

Venkatalakshmi, P., Vadivel, V., & Brindha, P. (2016). Role of phytochemicals as immunomodulatory agents: A review. International Journal of Green Pharmacy, 10(1), 1–18.

Wiart, C., Mogana, S., Khalifah, S., Mahan, M., Ismail, S., Buckle, M., Narayana, A. K., & Sulaiman, M. (2004). Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia, 75, 68–73.

Yeshwante, S. B., Juvekar, A. R., Nagmoti, D. M., Wankhede, S. S., Shah, A. S., Pimprikar, R. B., & Saindane, D. S. (2009a). Anti-inflammatory activity of methanolic extracts of Dillenia indica L. leaves. Journal of Young Pharmacists, 1, 63–66.

Yeshwante, S. B., Juvekar, A. R., Pimprikar, R. B., Kakade, R. T., Tabrej, M., Kale, M. K., & Firke, S. D. (2009b). Anti-diarrheal activity of methanolic and aqueous extracts of Dillenia indica L. Research Journal of Pharmacology Pharmacodynamics, 1(3), 140–142.

Yeshwante, S. B., Juvekar, A. R., Nagmoti, D. M., & Wankhede, S. (2011). In vivo analgesic activity of methanolic extract of Dillenia indica (L) leaves. Pharmacology, 3, 1084–1096.

Health-Related Quality of Life of Patients with HPV-Related Cancers in Indonesia Didik Setiawan, PhD1,2,*, Arrum Dusafitri, BPharm2, Gi...