Minggu, 16 Desember 2018

Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt.

Isolasi, karakterisasi dan aktivitas antimikroba  glikosida poliasetil dari Coreopsis tinctoria Nutt


Abstrak

Polyacetylene glycosides, (6Z, 12E) -tetradecadiene -810-diyne-1-ol-3 (R) -ObD-glucopyranoside (  triasal bernama coreoside E) dan (6Z, 12E) -tetradecadiene -810-diyne- 1-ol-3 (R) -ObL-arabinopyranosyl-  (1/2) -bD-glucopyranoside (triasal bernama coreoside F), diisolasi dari tunas Coreopsis tinctoria  Nutt., Bersama dengan satu senyawa yang dikenal, coreoside B. Kimia mereka struktur dijelaskan dengan  analisis spektroskopi ekstensif dan atas dasar reaktivitas kimianya. Coreoside E menunjukkan  tingkat aktivitas antimikroba yang tinggi terhadap Staphylococcus aureus dan Bacillus anthracis dengan konsentrasi hambat minimum  27 ± 0,27 dan 18 ± 0,40 mM, masing-masing, sedangkan F dan coreoside intiosida B menunjukkan aktivitas antimikroba yang lemah terhadap S. aureus dan B. anthracis.

© 2016 Elsevier Ltd. Semua hak dilindungi undang-undang.

1. Perkenalan

Polyacetylene glycosides adalah turunan dari polyacetylenes,  kelas senyawa yang mengandung dua atau lebih ikatan rangkap tiga  karbon karbon dalam kerangka karbon mereka (Negri, 2015). Glikosida poliasetilena didistribusikan secara luas di sejumlah sayuran dan tanaman obat. Mereka terutama ditemukan di keluarga Asteraceae, Apiaceae, Araliaceae, dan Campanulaceae, dengan contoh perwakilan seperti Daucus carota L., Apium graveolens L., Petroselinum crispum Mill., Panax ginseng, dan Carthamus tinctorius, Atractylodes lancea (Baranska et al. , 2005; He et al., 2011; Ji et al., 2010; Lee et al., 2009; Silva et al., 2015; Zidorn et al., 2005). Penelitian sebelumnya melaporkan bahwa glikosida poliasetilena memiliki beragam efek biologis, seperti sitotoksisitas (Park et al., 2002), antiinflamasi (Zhang et al., 2013), antimikroba (Pellati et al., 2006), anti-HIV ( Zhang et al., 2002) dan aktivitas anti alergi (Wang et al., 2001).

Coreopsis tinctoria Nutt. milik keluarga Asteraceae / Compositae  dan merupakan tanaman tahunan kecil, glabrous, dan aromatik yang didistribusikan secara global (Dias et al., 2010). Ini dikenal sebagai "krisan salju" atau "teh salju" di Tiongkok, dan tumbuh di Pegunungan Karakorum di Xinjiang selatan pada ketinggian di atas 3000 m (Zhang et al., 2013). C. tinctoria mengandung berbagai bioaktif phytochemical, termasuk phenolics, flavonoid, phenylpropanoids, sterol dan polyacetylene glycosides (Ma et al., 2016; Wang et al., 2015; Z? alaru et al., 2014). C. tinctoria secara tradisional digunakan dalam pengobatan tradisional untuk mengobati beberapa penyakit, seperti hipertensi, hiperlipidemia, diare dan nyeri internal (Dias et al., 2010; Z? Alaru et al.,2014).Meskipun beberapa lusin makalah telah berfokus pada bioaktifitas C. tinctoria, identifikasi kimia yang tepat dari bioaktif tetap tidak jelas.

Studi di sini menunjukkan bahwa ekstrak metanol C. tunas tinctoria menunjukkan aktivitas antimikroba yang signifikan terhadap S. aureus, dan ekstrak ini diteliti lebih lanjut. Dua glikosida poliasetilen baru (dan satu dikenal) diisolasi dari ekstrak bioaktif dan dievaluasi untuk aktivitas antimikroba. Dijelaskan adalah proses pemisahan bioaktif, dan penjelasan struktur mereka berdasarkan sifat spektroskopi dan reaktivitas kimia.


2. Hasil dan diskusi

2.1. Elusidasi struktural glikosida poliasetilena

Senyawa 1 diisolasi sebagai bubuk amorf coklat. Nya rumus molekul ditentukan menjadi C20H28O7 berdasarkan resolusi tinggi electrospray ionization mass spectrometry (HRESIMS) analisis puncak ion pseudomolecular pada m / z 403.1742 [M þ Na] þ (calcd. 403.1757), menunjukkan tujuh derajat ketidakjenuhan. Nya Spektrum UV menunjukkan pita serapan yang kuat pada 230, 262, 276, 294 dan 313 nm, yang merupakan karakteristik kromofor ene-diyne (Zhou et al., 2006). Spektrum IR-nya menunjukkan daya serap yang kuat band pada 3326, 2311 dan 1603 cm? 1, sesuai dengan hidroksil kelompok, ikatan rangkap tiga dan ikatan ganda, masing-masing (Zhou et al., 2006). Data ini menunjukkan bahwa 1 adalah senyawa ene-diyne. Data spektroskopi 1H NMR menunjukkan empat proton olefin di d 6.34 (m, 1H), 5.65 (m, 1H), 5.61 (m, 1H) dan 6.32 (m, 1H), sebuah proton anomerik pada d 4,38 (d, J ¼ 7,84 Hz, 1H), dan beberapa gula atau proton teroksigenasi antara d 3.1 dan d 4.0 (Gambar. S1 dan Tabel 1). Spektrum 13C NMR dari 1 (Gambar. S2) menunjukkan adanya 20 sinyal karbon. Enam dari ini ditugaskan ke bagian gula, termasuk karbon anomerik pada d 102,5 (C-1prime), dengan sisanya 14 ditugaskan ke bagian aglycone, yang terakhir berhubungan hingga empat acetylenic carbons di d 78.9 (C-8), 71.8 (C-9), 71.7 (C-10), dan 79,1 (C-11), empat karbon olefinik di d 148,2 (C-6), 108,4 (C-7), 109,4 (C-12), dan 142,9 (C-13), dua karbon beroksigen pada d 58,1 (C-1) dan 76,5 (C-3), satu metil karbon pada d 17,4 (C-14), dan tiga metilen karbon di d 36,8 (C-2), 34,0 (C-4), dan 28,6 (C-5), masing-masing. Secara bersama-sama, data ini menunjukkan bahwa 1 adalah a glikosida poliasetilena khas. Analisis 1He1HeCOSY (Spektroskopi Korelasi), HSQC (Heteronuclear Singular Quantum) Korelasi) dan HMBC (Heteronuclear Multiple Bond)


Tabel 1
Data spektroskopi NMR untuk senyawa 1 dan 2 dalam DMSO-d6 pada 400 (1H) dan 100 MHz (13C).

Korelasi) spektrum 1 memungkinkan proton dan resonansi karbon untuk sepenuhnya ditugaskan (Gbr.1). Korelasi kunci dari H-10 ke C-3 dan H-3 ke C-1prime, diamati dalam eksperimen HMBC, menunjukkan bahwa gula terhubung langsung ke posisi C-3 dari aglycone. Ikatan ganda antara C-6 dan C-7 ditentukan untuk berada dalam konfigurasi cis, karena korelasi NOESY yang kuat antara H-6 dan H-7, sedangkan ikatan ganda antara C-12 dan C-13 diberi konfigurasi trans atas dasar korelasi NOESY antara H-12 dan H-14. Unit gula diidentifikasi sebagai kelompok b-glukopiranosil atas dasar 3HH-10, H-20 kopling konstan 7,84 Hz. Hidrolisis asam 1 dengan 1 M HCl membebaskan aglycone 1a dan D-glukosa (Gbr. 1), yang diidentifikasi menggunakan gas kromatografi-spektrometri massa (GC-MS) analisis dari derivatif trimethylsilyl L-sistein yang langsung dibandingkan dengan sampel otentik dari bahan-bahan ini disiapkan dengan cara yang sama. Kedua sampel disiapkan dari 1 dan D-glukosa memberikan senyawa dengan waktu retensi yang sama dari 17,82 menit, menunjukkan bahwa senyawa 1 mengandung gugus D-glukosa. Konfigurasi absolut dari senyawa 1 pada C-3 ditetapkan sebagai R dengan perbandingan nilai [a] D (10.2, c ¼ 1.08, MeOH) dengan referensi data (Umeyama et al., 2010). Berdasarkan hasil ini, senyawa 1 dijelaskan menjadi (6Z, 12E) -tetradecadiene-8,10-diyne-1-ol-3 (R) -ObD-glucopyranoside, dan triasal bernama coreoside E (Gbr. 1).

Senyawa 2 diisolasi sebagai serbuk amorf coklat dan rumus molekulnya ditentukan menjadi C25H36O11 berdasarkan analisis HRESIMS dari puncak ion pseudomolekul pada m / z 551,0295 [M þ K] þ (calcd. 551,0250). Spektrum UV-nya menunjukkan pita serapan ene-diyne khas pada 230, 262, 276, 294 dan 313 nm. Spektrum IR memiliki penyerapan sesuai dengan hidroksil, karboksil, olefinik dan fungsi glikosidik pada 3425, 1719, 1653 dan 1023 cm 1, masing-masing. Perbandingan langsung dari data 1H dan 13C NMR untuk 2 (Gambar. S3 dan Gambar. S4) dengan nilai 1 menunjukkan bahwa mereka berbagi kerangka yang sama, dengan satu-satunya perbedaan adalah unit gula monosakarida dari 1 digantikan oleh unit disakarida di 2. Penugasan ini didukung oleh adanya dua sinyal proton anomerik di d 4.59 (d, J ¼ 6.72 Hz, 1H), 4.49 (d, J ¼ 7.68 Hz, 1H), dan dua sinyal karbon anomerik yang sesuai pada 100,9 (C-10), 104,2 (C-100) (Tabel 1). Struktur penuh senyawa 2 selanjutnya dikonfirmasi oleh eksperimen 1He1H COSY, HSQC, dan HMBC. Korelasi kunci dari H-20 hingga C-100 dan H-100 hingga C-20 diamati dalam eksperimen HMBC, menunjukkan bahwa unit gula kedua terhubung ke posisi C-20 dari unit gula pertama. Konstan 3JH-10, H-20 dan 3JH-100, H-200 dari 6,72 dan 7,68 Hz dari proton anomerik menunjukkan bahwa dua unit gula masing-masing adalah kelompok b-glukopiranosil dan b-arabinopiranosil. Konfigurasi absolut dari dua unit gula diidentifikasi sebagai kelompok D-glukopiranosil dan L-arabinopiranosil dengan prosedur yang sama seperti yang digunakan untuk senyawa 1. Konfigurasi C-3 juga ditetapkan sebagai R dengan perbandingan nilai [a] D (7,2 , c ¼ 1,15, MeOH) dengan data referensi (Umeyama et al., 2010). Akibatnya, senyawa 2 ditentukan sebagai (6Z, 12E) -tetradecadiene-8,10-diyne-1-ol-3 (R) -ObL-arabinopyranosyl- (1/2) -bD-glucop-yranoside, dan triasal bernama coreoside F (Gbr. 1)

Senyawa 3 juga diisolasi sebagai bubuk amorf coklat. Rumus molekulnya ditetapkan sebagai C25H36O12 berdasarkan analisis HRESIMS dari puncak ion pseudomolecular pada m / z 551.1372 [M þ Na] þ (calcd. 551.1360) dan analisis data NMR. Spektrum UV-nya menunjukkan pita serapan yang kuat pada 239, 247, 278, 294 dan 313 nm, menunjukkan bahwa 3 juga merupakan glikosida poliasetilena. Perbandingan yang hati-hati dari spektrum 1H dan 13C NMR 2 dan 3 menunjukkan sinyal yang sangat mirip, dengan pengecualian doublet yang sesuai dengan proton 14-CH3 2 pada 1,83 (d, J ¼ 6,84 Hz, 3H) yang digantikan oleh sinyal hidroksimetil pada 4,05 (s, 1H) dalam spektrum 3.

Gambar. 1. Senyawa yang diisolasi dari ekstrak metanol C. tinctoria dan korelasi COZY dan HMBC untuk senyawa 1 dan  3.

Selanjutnya, sinyal karbon pada 17,4 (C-14) dalam spektrum 2 telah digantikan oleh sinyal karbon pada 61,2 dalam spektrum 3, yang menunjukkan bahwa gugus metil pada posisi C-14 2 telah digantikan.
diganti dengan gugus hidroksimetil pada 3. Empat proton olefinik dalam 1H NMR pada d 6,39 (m, 2H), 5,87 (d, J ¼ 15,76 Hz, 1H), dan 5,70 (d, J ¼ 15,68 Hz, 1H) diberikan untuk trans ikatan ganda karena konstanta kopling besar mereka, menunjukkan bahwa 3 memiliki (6E, 12E) -tetradecadiene-8,10-diyne-1,3-diol aglycone. Konfigurasi karbon anomerik dari dua unit gula ditentukan sebagai gugus bglucopyranosyl dan b-arabinopyranosyl dari 3JH-10, H-20 dan 3JH-100, H-200 konstanta kopling 7,76 dan 6,56 Hz, masing-masing. Kelompok b-glukopiranosil dan b-arabinopiranosil senyawa 3 dikonfirmasi sebagai D-glukosa dan L-arabinosa menggunakan prosedur yang sama seperti yang digunakan untuk senyawa 1 dan 2. Konfigurasi mutlak C-3 dalam senyawa 3 ditugaskan sebagai R oleh perbandingan nilai [a] D dengan data referensi.

Sebagai sumber utama polyacetylenes, sejumlah besar glikosida poliasetilen telah diisolasi dari tanaman famili Asteraceae selama 15 tahun terakhir (Negri, 2015). Sebagian besar senyawa ini memiliki 10,13 atau 15 atom karbon dalam kerangka karbon mereka, yaitu C10, C13, dan C15 polyacetylene glycosides (Negri, 2015). Hal ini relatif jarang untuk mengisolasi glikosida C14 poliasetilen, terutama dengan ikatan rangkap dua, dari tanaman famili Asteraceae. Penelitian sebelumnya telah menunjukkan bahwa spesies tanaman dari keluarga ini dapat mensintesis jenis polyacetylenes yang sama (Zhang et al., 2013). Hasil penelitian ini memperluas informasi glikosida poliasetilena dari tumbuhan famili Asteraceae dan dapat membantu mengidentifikasi glikosida poliasetilen baru dari keluarga ini.


2.2. Bioassay antimikroba

Ketiga senyawa diuji untuk aktivitas antimikroba terhadap sembilan strain patogen dan nilai MIC dari senyawa dirangkum dalam Tabel 2. Compound 1 menunjukkan tingkat aktivitas antimikroba yang tinggi dibandingkan dengan kontrol positif, ampisilin dan gentamisin d terhadap Staphylococcus aureus dan Bacillus anthracis. , dengan nilai MIC dari 27 ± 0,27 mM dan 18 ± 0,40 mM, masing-masing. Senyawa 2 dan 3 keduanya menunjukkan aktivitas antimikroba yang lemah terhadap S. aureus dan B. anthracis.

Pemisahan ekstrak metanol C. tunas tinctoria memungkinkan isolasi dua glikosida poliakrilen baru dan satu yang diketahui. Struktur dari senyawa ini dijelaskan menggunakan kombinasi metode spektroskopi dan analisis kimia. Sepengetahuan kami, ini adalah laporan pertama tentang isolasi senyawa 1 dan 2 dari C. tinctoria.


Meja 2
Aktivitas antimikroba dari senyawa yang diisolasi dari C. tinctoria
Catatan: Nilai minus () berarti tidak ada penghambatan yang diamati
B. anthracis adalah agen penyebab Anthrax, yang merupakan penyakit zoonosis yang sangat mematikan ditemukan di seluruh dunia (Wenner dan Kenner, 2004). Baru-baru ini, B. anthracis telah digunakan sebagai agen bioteroris di AS dan Eropa (Hicks et al., 2012; Irenge dan Gala, 2012). Meskipun antibiotik lini depan telah ditemukan yang dapat mengobati anthrax, strain B. anthracis semakin menjadi resisten (Bouzianas, 2010) dan sangat penting untuk menemukan antibiotik baru. Semua senyawa dalam penelitian ini menunjukkan aktivitas antimikroba terhadap B. anthracis dan di antaranya senyawa 1 menunjukkan aktivitas yang poten, dengan potensi untuk digunakan sebagai antibiotik baru terhadap B. anthracis. Hidrolisat glikosida poliasetilena ini memiliki fitur struktural yang mirip dengan senyawa induk dan juga dapat menunjukkan aktivitas antimikroba (Zhang et al., 2013). Namun,


3. Kesimpulan

Tiga glikosida poliasetilen dengan aktivitas antimikroba terhadap B. anthracis telah diisolasi dari tunas C. tinctoria dan diidentifikasi secara kimia dan dicirikan. Penelitian lebih lanjut diperlukan untuk menjelaskan mekanisme aktivitas antibakteri dari senyawa ini.


4. Eksperimental

4.1. Prosedur eksperimental umum

1H, 13C NMR spektrum dan dua dimensi spektrum NMR, termasuk NYAMAN, HSQC dan HMBC, diperoleh pada Bruker Avance 300, 400, atau 500 spektrometer (Bruker BIOSPIN GmbH, Beijing, Cina), menggunakan tetrametilsilan (TMS) sebagai standar internal . Pergeseran kimia dalam spektra NMR dicatat sebagai nilai d. Spektra UV diukur dengan spektrofotometer Beckman DU640 (Beckman Coulter, Beijing, China). spektrum IR diperoleh menggunakan KBr cakram pada Nicolet Nexus 470 spektrofotometer (Thermo Scientific, Beijing, Cina). Rotasi optik direkam pada polarimeter digital Perkin-Elmer 243B. Electrospray massa ionisasi spektrometri (ESI-MS) analisis diperoleh menggunakan pada spektrometer massa Q-Tof Ultima global GAA076 LC (Waters Asia, Ltd, Singapore).

Dimethyl sulfoxide-d6 (DMSO-d6) dan MeOH dibeli dari Merck (Darmstadt, Jerman). Semua bahan kimia dan pelarut lain yang digunakan dalam penelitian ini adalah kelas analitis.


4.2. Bahan tanaman

C. tinctoria diperoleh dari pasar petani Beiyuanchun di kota Urumchi dari Daerah Otonomi Xinjiang Uygur, Cina pada bulan September 2012. Spesimen Voucher C. tinctoria diidentifikasi oleh Thomas Nuttall dan disimpan di Laboratorium Kunci Pengolahan Makanan dan Kontrol Kualitas, Nanjing Agricultural University, dengan nomor indeks XJ8126.


4.3. Ekstraksi dan isolasi

Tunas segar C. tinctoria (2,5 kg) dikeringkan, dihomogenisasi dengan homogenisasi Polytron dan diekstraksi (X3) dengan volume sikloheksana yang sama pada suhu kamar untuk menghilangkan minyak. Kemudian residu diekstraksi dengan volume MeOH yang sama (X 3) pada suhu kamar. Larutan ekstraksi MeOH gabungan disaring dan dipekatkan dalam vakum pada 45 C untuk menghasilkan ekstrak (32 g).

Yang terakhir dipisahkan menjadi tiga fraksi (Fr.1e3) menggunakan silika gel CC (100 g silika gel, 300e400 mesh) dengan elusi gradien langkah-bijaksana dari petroleum eter: aseton (100: 0 hingga 0: 100, v / v). Fraksi dengan aktivitas antimikroba kemudian dipisahkan oleh metode yang dipandu bioassay.

Fraksi 1 (7,6 g) dipisahkan menjadi dua subfraksi (Gambar 1-1 dan 1-2) dengan silika gel CC menggunakan CHCl3: MeOH (10: 1, v / v) sebagai eluen. Fr. 1-1 (dengan aktivitas antimikroba) kemudian dilewatkan melalui kolom silika gel dengan CHCl3: MeOH eluen (5: 1, v / v) untuk menghasilkan senyawa 1 (4,5 mg).

Fraksi 2 (9,4 g) dikenakan silika gel CC dengan CHCl3: MeOH eluen (1: 1, v / v) untuk mendapatkan dua subfraksi, Fr. 2-1 dan Fr. 2-2 (keduanya dengan aktivitas antimikroba yang lemah). Fr. 2-1 dipisahkan oleh Sephadex LH-20 CC dengan CHCl3: MeOH eluen (1: 1, v / v) untuk menghasilkan senyawa 2 (3,6 mg). Fr. 2-2 dimurnikan dengan CC silika gel menggunakan CHCl3: MeOH eluen (5: 1, v / v) untuk memperoleh senyawa 3 (9,2 mg).


4.4. Hidrolisis asam senyawa dan penentuan konfigurasi absolut

Metode yang digunakan untuk menentukan konfigurasi mutlak dilakukan seperti yang dijelaskan (Deyrup et al., 2007) dengan sedikit modifikasi. Secara singkat, senyawa murni (2 mg) secara individual dilarutkan dalam MeOH sebelum penambahan 1 M HCl (2 mL). Setiap campuran dipanaskan pada 85 ° C selama 15 jam, dengan larutan yang dihasilkan diekstraksi dengan volume EtoAc yang sama. Setiap larutan EtoAc kemudian secara individual diuapkan untuk menghilangkan sekitar 90% pelarut. Kemudian masing-masing campuran yang tersisa secara individual dikenakan silika gel CC menggunakan CHCl3 sebagai eluen untuk memberikan polyacetylene (1a diperoleh dari senyawa 1 dan 3a yang diperoleh dari senyawa 3). Setiap lapisan berair ekstraksi diuapkan dalam vakum untuk memberikan residu, yang berulang kali disuling hingga kering dari H2O dalam vakum sampai residu netral diperoleh. L-Cysteine ​​methyl ester hydrochloride (2 mg dalam 1mL piridin anhidrat) selanjutnya ditambahkan ke setiap campuran dan diaduk pada 60 C selama 1 jam. Campuran HMDS-TMCS (hexamethyldisilazane: trimethylchlorosilane: 3: 1, 300 mL) juga ditambahkan, dengan campuran yang dihasilkan diaduk secara individual selama 30 menit, dengan heksana (3 mL) dan H2O (1 mL) kemudian ditambahkan. Lapisan heksana dikeringkan (anhid. Na2SO4) sebelum dianalisis dengan GC-MS. Kondisi analisis adalah sebagai berikut: kolom kapiler, HP-5MSi (30 m 0,25 mm, dengan film 0,25 mm, Agilent, USA); deteksi, FID; suhu injeksi, 250 C; suhu awal 160 C, ditingkatkan menjadi 250 C pada 15 C / menit, dan diadakan pada 250 C selama 10 menit. dengan hexane (3 mL) dan H2O (1 mL) kemudian ditambahkan. Lapisan heksana dikeringkan (anhid. Na2SO4) sebelum dianalisis dengan GC-MS. Kondisi analisis adalah sebagai berikut: kolom kapiler, HP-5MSi (30 m 0,25 mm, dengan film 0,25 mm, Agilent, USA); deteksi, FID; suhu injeksi, 250 C; suhu awal 160 C, ditingkatkan menjadi 250 C pada 15 C / menit, dan diadakan pada 250 C selama 10 menit. dengan hexane (3 mL) dan H2O (1 mL) kemudian ditambahkan. Lapisan heksana dikeringkan (anhid. Na2SO4) sebelum dianalisis dengan GC-MS. Kondisi analisis adalah sebagai berikut: kolom kapiler, HP-5MSi (30 m 0,25 mm, dengan film 0,25 mm, Agilent, USA); deteksi, FID; suhu injeksi, 250 C; suhu awal 160 C, ditingkatkan menjadi 250 C pada 15 C / menit, dan diadakan pada 250 C selama 10 menit.


4.5. Coreoside E (1)

Bubuk amorf coklat. [a] D: 10.2 (MeOH; c ¼ 1.08). UV (MeOH) lmax (ε): 230, 262, 276, 294, dan 313 nm. IR (KBr) 3326, 2311 dan 1603 cm 1. Untuk data spektroskopi 1H NMR dan 13C NMR, lihat Tabel 1. HRESI-MS m / z 403.1742 [M þ Na] þ (calcd. 403.1757 untuk C20H28O7).

1a. Hidrolisat senyawa 1 (Gbr. 1). Bubuk amorf coklat. 1H NMR (300 MHz, MeOH, TMS): d 6.44 (m, 2H), 5.92 (d, J ¼ 15.92 Hz, 1H), 5.71 (d, J ¼ 16.00 Hz, 1H), 4.20 (m, 2H), 3,74 (m5H), 2,30 (m, 2H), 2,06 (m, 1H), 1,64 (m, 2H), 1,53 (m, 2H). 13C NMR: d 17,4, 36,4, 39,6, 59,7, 61,4, 68,7, 72,2, 73,5, 79,3, 80,1, 106,7, 108,2,147,7, 149,1; ESI-MS m / z 241.1 [M þ Na] þ.


4.6. Coreoside F (2)

Bubuk amorf coklat. [a] D: 7.2 (MeOH; c ¼ 1.15). UV (MeOH) lmax (ε): 230, 262, 276, 294, dan 313 nm. IR (KBr) 3425,1719, 1653 dan 1023 cm 1. Untuk data spektroskopi 1H NMR dan 13C NMR, lihat Tabel 1. HRESI-MS m / z 551,0295 [M þ K] þ (calcd. 551,0250 untuk C25H36O11).


4,7. Coreoside B (3)

Bubuk amorf coklat. UV (MeOH) lmax (ε): 239, 247, 278, 294, dan 313 nm. 1H NMR (300 MHz, MeOH, TMS): d 6.39 (m, 2H), 5.87 (d, J ¼ 15.76 Hz, 1H), 5.70 (d, J ¼ 15.68 Hz, 1H), 4.59 (d,
J ¼ 6,56 Hz, 1H), 4,50 (d, J ¼ 7,76 Hz, 1H), 4,15 (m, 2H), 4,05 (s, 1H), 3,89 (m, 6H), 3,70 (m, 4H), 3,40 ( dd, J ¼ 6.30, 12.63 Hz, 2H), 3.27 (m, 2H), 2.33 (m, 2H), 1.81 (m, 3H), 1.68 (m, 3H). 13C NMR: d 28,6, 33,7, 36,6, 58,0, 61,2, 65,5, 68,0, 70,0, 71,7, 71,7, 72,7, 73,5, 74,1, 76,2, 76,3, 76,8, 78,3, 79,8, 81,3, 100,9, 104,2, 107,6, 108,2, 145.9, 148.6; HRESIMS m / z 551.1372 [M þ Na] þ (calcd. 551.1360 untuk C25H36O12).

3a. Hidrolisat senyawa 3 (Gbr. 1). Bubuk amorf coklat. 1H NMR (300 MHz, MeOH, TMS): d 6.35 (m, 2H), 5.68 (d, J ¼ 15.54 Hz, 1H), 3.65 (m 1H), 2.27 (m, 1H), 1.89 (m, 1H) , 1,82 (dd, J ¼ 1,83, 6,84 Hz, 1H), 1,62 (m, 2H), 1,54 (m, 2H). 13C NMR: d 36,4, 39,6, 59,7, 61,4, 68,7, 72,2, 73,5, 74,1, 79,3, 80,1, 106,7, 108,2, 147,7, 149,1; ESI-MS m / z 233,1 [M e H].


4.8. Bioassay antimikroba

Bioassay antimikroba dilakukan secara individual dengan masing-masing senyawa murni menggunakan metode difusi cakram yang dijelaskan oleh Gomez et al. (1997). Secara singkat, setiap gelas agar (diameter 6 mm) diisi dengan larutan 100 mL dari salah satu senyawa uji yang dilarutkan dalam DMSO 5% pada konsentrasi 2, 4, 8, 16, 32, 64, 128 dan 256 mM. Cangkir yang mengandung DMSO dan agen antimikroba komersial, ampisilin dan gentamisin (Institut Nasional untuk Pengendalian Produk Farmasi dan Biologi, Cina), digunakan sebagai kontrol negatif dan positif, masing-masing. Sembilan mikroorganisme uji yang digunakan adalah Mycobacterium smegmatis (CMCC 93321), S. aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Clostridium perfringens (ATCC 13124), Micrococcus tetragenus (ATCC 35098), Candida albicans (CMCC 98001), Mycobacterium phlei (AS 4.1180), Escherichia coli (ATCC 25922) dan B. anthracis (NX 1.1230). Strain yang diuji dibudidayakan dalam lempeng agar LuriaeBertani (LB) untuk bakteri dan di piring agar-agar YPD untuk C. albicans pada 37 C. Setelah inkubasi selama 24 jam, zona inhibisi (mm diameter) dicatat dan konsentrasi hambat minimal (MIC) nilai ditentukan.


4.9. Analisis statistik

Data yang dihasilkan disajikan sebagai sarana ± standar deviasi dalam informasi Pendukung


Catatan

Para penulis menyatakan tidak ada kepentingan keuangan yang bersaing.


Ucapan terima kasih

Pekerjaan ini disponsori secara finansial oleh Dana Ilmu Pengetahuan Alam Nasional Cina (nomor Hibah 31260377), dan oleh Dana untuk Proyek Qing Lan Provinsi Jiangsu, dan oleh dana khusus penilaian risiko keamanan produk pertanian agro Departemen Pertanian Republik Rakyat dari China (GJFP201601106).


Lampiran A. Data tambahan

Data tambahan yang terkait dengan artikel ini dapat ditemukan di
http://dx.doi.org/10.1016/j.phytochem.2016.12.023


Referensi

Baranska, M., Schulz, H., Baranski, R., Nothnagel, T., Christensen, LP, 2005. In situ
analisis simultan polyacetylenes, karotenoid dan polisakarida di
akar wortel. J. Agric. Makanan. Chem. 53 (17), 6565e6571.
Bouzianas, DG, 2010. Pendekatan medis saat ini dan masa depan untuk memerangi
ancaman anthrax. J. Med. Chem. 53 (11), 4305e4331.
Deyrup, ST, Gloer, JB, O'Donnell, K., Wicklow, DT, 2007. Kolokosides AD: triterpenoid
glikosida dari isolat Hawaiian Xylaria sp. J. Nat. Melecut. 70,
378e382.
Dias, T., Perunggu, MR, Houghton, PJ, Mota-Filipe, H., Paulo, A., 2010. Flavonoidrich
fraksi dari Coreopsis tinctoria mempromosikan toleransi glukosa kembali melalui
pemulihan fungsi pankreas pada tikus yang intreptozotocin-induced glucose-intolerant.
J. Ethnopharmacol. 132 (2), 483e490.
Gomez, S., Cosson, C., Deschamps, AM, 1997. Bukti untuk zat seperti bakteriosin
diproduksi oleh strain baru Streptococcus sp., penghambatan ke gram-positif
patogen foof-borne. Res. Mikrobiol. 1997 (148), 757e766.
Dia, J., Shen, Y., Jiang, JS, Yang, YN, Feng, ZM, Zhang, PC, Yuan, SP, Hou, Q., 2011.
Glukosida poliasetilena baru dari kuntum Carthamus tinctorius dan mereka
aktivitas anti-inflamasi yang lemah. Karbohidrat Res. 346 (13), 1903e1908.
Hicks, CW, Sweeney, DA, Cui, X., Li, Y., Eichacker, PQ, 2012. Sekilas tentang
infeksi anthrax termasuk bentuk penyakit yang baru diidentifikasi dalam injeksi
pengguna narkoba. Intensif. Peduli. Med. 38 (7), 1092e1104.
Irenge, LM, Gala, J.-L., 2012. Metode deteksi cepat untuk Bacillus anthracis di
sampel lingkungan: ulasan. Appl. Mikrobiol. Biotechnol. 93 (4),
1411e1422.
Ji, Y., Feng, X., Xiao, CC, Dong, YF, Wang, QZ, Wang, M., Zhao, YY, 2010. Sebuah baru
poliasetilen glikosida dari rimpang Atractylodes lancea. Dagu. Chem.
Mudah. 21 (7), 850e852.
Lee, SM, Bae, KH, Sohn, HJ, 2009. Panaxfuraynes A dan B, dua tetrahidrofuranik baru
polyacetylene glikosida dari Panax ginseng CA Meyer. Segi empat
Mudah. 50 (4), 416e418.
Ma, Z., Zheng, S., Han, H., Meng, J., Yang, X., Zeng, S., Zhou, H., Jiang, H., 2016.
komponen bioaktif dari Coreopsis tinctoria (Asteraceae) capitula: antioksidan
aktivitas in vitro dan profil dalam plasma tikus. J. Funct. Makanan 20, 575e586.
Negri, R., 2015. Polyacetylenes dari tanaman dan jamur terestrial: fitokimia baru-baru ini
dan kemajuan biologis. Fitoterapia 106, 92e109.
Park, J., Min, B., Jung, H., Kim, Y., Lee, H., Bae, K., 2002. glikosida Polyacetylene dari
Gymnaster koraiensis. Chem. Pharm. Banteng. 50, 685e687.
Satu, F., atau Cal S. Selamat datang, S., Adinolfi, B., Nieri, P., Melegari, M. 2006. Isolasi
dan struktur elusidasi polyacetylenes sitotoksik dan poliena dari Echinacea
pallida. Phytochemistry 67 (13), 1359e1364.
Silva, DB, Rodrigues, ED, da Silva, GV, Lopes, NP, de Oliveira, DC, 2015. Postcolumn
sodiasi untuk meningkatkan deteksi glikosida poliasetilena di LCDAD-
Analisis MS: contoh dari Bidens gardneri (Asteraceae). Talanta 135,
87e93.
Umeyama, A., Matsuoka, N., Tambang, R., Nakata, A., Arimoto, E., Matsui, M., Shoji, N.,
Arihara, S., Takei, M., Hashimoto, T., 2010. Polyacetylene diol dengan antiproliferatif
dan mendorong efek polarisasi Th1 dari spons laut
Callyspongia sp. J. Nat. Med. 64 (1), 93e97.
Wang, N., Yao, X., Ishii, R., Kitanaka, S., 2001. Agen anti alergi dari alam
sources.3. Struktur dan efek penghambatan pada produksi oksida nitrat dan
Pelepasan histamin lima poliakrilen baru glukosida dari Bidens parviflora
willd. Chem. Pharm. Banteng. 49 (8), 938e942.
Wang, W., Chen, W., Yang, Y., Liu, T., Yang, H., Xin, Z., 2015. Senyawa fenolik baru
dari Coreopsis tinctoria Nutt. dan antioksidan dan tanda angiotensin mereka
aktivitas penghambatan enzim. J. Agric. Makanan. Chem. 63 (1), 200e207.
Wenner, KA, Kenner, JR, 2004. Anthrax. Dermatol. Clin. 22 (3), 247e256.
Z alaru, C., Cris¸ an, CC, C alinescu, I., Moldovan, Z., T¸ ^ arcomnicu, I., Litescu, SC,
Tatia, R., Moldovan, L., Boda, D., Iovu, M., 2014. Polifenol dalam tinctoria Coreopsis
Kacang. buah dan tanaman mengekstrak evaluasi kapasitas antioksidan. Central Eur. J.
Chem. 12 (8), 858e867.
Zhang, H., Lu, Z., Tan, GT, Qiu, S., Farnsworth, NR, Pezzuto, JM, Fong, HHS, 2002.
Polyacetyleneginsenoside-Ro, saponin triterpen baru dari Panax ginseng.
Tetrahedron Lett. 43 (6), 973e977.
Zhang, Y., Shi, S., Zhao, M., Chai, X., Tu, P., 2013. Coreosides AD, C14-polyacetylene
glikosida dari kapitula tinctoria Coreopsis dan anti-inflamasinya
aktivitas melawan COX-2. Fitoterapia 87, 93e97.
Zhou, Y.-Z., Ma, H.-YCH, Qiao, L., Yao, Y., Cao, J.-Q., Pei, Y.-H., 2006. Aseteten baru
glukosida dari Carthamus Tinctorius. Chem. Pharm. Banteng. 54 (10), 1455e1456.
Zidorn, C., Werner, K., Ganzera, M., Schubert, B., Sigmund, EM, Mader, J., Greil, R.,
Ellmerer, EP, Stuppner, H., 2005. Polyacetylenes dari sayuran Apiaceae
wortel, seledri, adas, peterseli, dan parsnip dan aktivitas sitotoksik mereka. J. Agric.
Makanan Chem. 53 (7), 2518e2523.

Jumat, 14 Desember 2018

Classification of Vaccines

Chapter 2
Classification of Vaccines


2.1 Introduction
The introduction of human vaccines has had a tremendous impact on global health by dramatically reducing the mortality and morbidity caused by infectious diseases, and next to the wider availability of potable water, it is considered the most costeffective and successful medical intervention ever introduced. Vaccines have inevitably prevented disease, complications, and the death of millions of infants and children by protecting against many deadly infectious diseases (Bloom et al. 2005 ;Ehreth 2003 ).

Although vaccines have mainly demonstrated their value to human society during the past century, the principle of vaccination has been used in China and India for more than a thousand years as the practice of variolation, where individuals were inoculated with live and virulent smallpox virus to achieve protection against a later encounter. Although the procedure did lead to protection, it was not without the risk of death or causing an epidemic. However, Edward Jenner is generally honored for the pioneering development of the fi rst vaccine more than 200 years ago by demonstrating that exposure of humans to cowpox virus induced cross-protective immunity towards smallpox (Riedel 2005 ). The word vaccine was in fact coined by Jenner, and is derived from the Latin word vacca , which means cow.

Subsequently, the development of vaccines have for more than a century been based on Louis Pasteur’s principle of isolating, purifying, and injecting the causative microorganisms in order to induce protective immunity (Rappuoli 2007 ). After World War II more systematic childhood vaccination programs became a widespread tool for improving public health (Bloom et al. 2005 ). The mortality caused by serious and life-threatening diseases has been dramatically reduced as a result of these successful global childhood vaccination programs, and the introduction of vaccines has led to the eradication of smallpox and near eradication of infectious diseases such as polio (Ehreth 2003 ; Rappuoli 2007 ). The World Health Organization (WHO) currently recommends routine immunization against 12 different diseases (Table 2.1 ). Furthermore, additional vaccines are recommended for populations at high risk or regions with special needs.

Despite this true medical success story, current vaccination efforts do face a number of obstacles. Three million people are estimated to die annually from vaccine- preventable illnesses, and infectious diseases still remain the leading cause of death worldwide for several reasons. The rapid progress towards universal vaccination coverage in the 1970s and 1980s has slowed in the past decade, and several childhood illnesses have started to re-emerge as a result of ineffi cient vaccine coverage.
This may be due to public perception of vaccination, where an individual may fi nd it rational to refuse vaccination in order to avoid the possible side effects, or due to political reasons. The consequence has been the reemergence of diseases such as measles and pertussis in certain industrialized countries and of polio in certain developing countries (Bloom et al. 2005 ).

Infectious disease-caused mortality can also be explained by lack of effi cacious vaccines where conventional vaccinology has failed due to factors such as antigenic drift, and by the existence of more diffi cult target diseases, for example, tuberculosis (TB), human defi ciency virus-acquired immune defi ciency syndrome (HIVAIDS), and malaria. Antigenic drifts represent a challenge for vaccine development,


Table 2.1 WHO recommendations for routine immunization (WHO 2012 )
Disease/antigen Age group
Bacillus Calmette-Guérin (BCG) Children
Hepatitis B Children (+adolescents/adults in high risk groups)
Polio Children
Diphtheria Children, adolescents, and adults
Tetanus Children, adolescents, and adults
Pertussis Children
Haemophilus infl uenzae type B Children
Pneumococcal Children
Rotavirus Children
Measles Children
Rubella Children
Human papilloma virus (HPV) Adolescent girls


and the success stories in vaccinology arise to a large extent from development of vaccines against pathogens with no or little antigenic drift, for example, vaccines against diphtheria and tetanus, where there is no antigenic drift in the target toxin antigen. Antigenic shift can result in changes in surface antigens and the influenza virus is an example of a pathogen where such changes occur annually. This antigenic variability is overcome by altering the vaccine on a yearly basis. However, pathogens where antigens change faster, e.g., human immunodeficiency virus (HIV), are more difficult to approach by conventional vaccinology. To date, conventional vaccinology has been most successful in vaccines against pathogens for which protection is antibody mediated. The difficult vaccine targets represent to a large extent pathogens for which antibodies cannot provide sufficient protection (Rappuoli 2007 ).
An example is the intracellular pathogen Mycobacterium tuberculosis. In 2012, 8.6 million people were infected with M. tuberculosis and approximately 1.3 million people died from TB (WHO, Fact sheet 104, 2012 ). Numbers like these put great emphasis on the acute need for new prophylactic as well as therapeutic vaccines against global killers like TB, malaria, HIV-AIDS, and cancer.
However not only new vaccines are needed since improvements to conventional vaccines could have a tremendous impact on vulnerable population groups such as the elderly, since this population is immunologically hyporesponsive. Several vaccines approved for human use are listed in Table 2.2 .


2.2 Classifi cation of Vaccines
Traditionally vaccines have been based on live attenuated pathogens, whole inactivated organisms or inactivated bacterial toxins and are most often sufficiently immunogenic. Traditional vaccines based on the whole-cell concept possess intrinsic immune stimulatory capacity, which is adequate for the induction of long-lived protective immunity. However, a great disadvantage related to this approach is that these live systems have associated adverse effects that in some cases are mild but can be severe or even fatal in others (Huang et al. 2004 ). Safety is of major concern in vaccine development and limits the use of the traditional approach in the development of new vaccines as traditional vaccines may cause disease in immune compromised hosts or revert back to virulence (Robinson and Amara 2005 ). With these issues, new parenteral vaccines are unlikely to be live attenuated vaccines.

In light of these limitations, new strategies for vaccine development are emerging, and vaccine development is moving away from the whole-cell based approach of live attenuated or inactivated vaccines and towards the safer spilt and subunit vaccine technology. The field of vaccinology has undergone tremendous breakthroughs over the past 30–40 years. An important contribution to these breakthroughs is provided by the introduction of recombinant DNA technology, which solved the problem of antigen manufacturing. Also the development of conjugate vaccines, subunit vaccines, and the non-replicating recombinant virus-like particles (VLPs) has had an enormous impact on vaccine development and success (Rappuoli 2007 ).


Table 2.2 Vaccines licensed for human use (non-exhaustive list)
Trade name Disease Causative agent Vaccine type Vaccine components Adjuvant/
target comment
AGRIFLU ® —Novartis Infl uenza Infl uenza virus Inactivated Trivalent for infl uenza type A and B None
Vaccines and Diagnostics, (whole virus based)
Inc. (various others
BCG vaccine “SSI” Tuberculosis Myco Bacterium Live attenuated Bacillus Calmette Guérins (BCG), Danish None
tuberculosis strain 1331
BioThrax ® (Emergent Anthrax Bacillus anthracis Subunit vaccine Cell-free fi ltrates of microaerophilic cultures Alum
Biodefense Operations of an avirulent, nonencapsulated strain of
Lansing, Inc.) Bacillus anthracis and proteins, including the
83 kDa protective antigen (PA) protein,
released during the growth period
Cervarix ® Cervical Human papillomavirus Subunit—virus Recombinant L1 protein, the major antigenic AS04
(GlaxoSmithKline) cancer (HPV) like particles protein of the capsid, of oncogenic HPV types
16 and 18
COMVAX ® (Merck & Hib-induced Haemophilus infl uenzae Conjugate Haemophilus b conjugate (meningococcal Alum
Co.) diseases type B vaccine protein conjugate) and Hepatitis B
(pneumonia, (recombinant) vaccine
meningitis
Hepatitis B Hepatitis B virus
FluMist ® Quadrivalent Infl uenza Infl uenza virus Live inactivated Quadrivalent vaccine for administration by None
(MedImmune, LLC) intranasal spray. FluMist Quadrivalent
contains four vaccine virus strains: an A/H1N1
strain, an A/H3N2 strain, and two B strains
Cold adapted, temperature sensitive, and
attenuated
Gardasil ® (Merck & Co.) Cervical Human papillomavirus Subunit—virus Recombinant quadrivalent vaccine prepared Alum
cancer (HPV) like particles from the purifi ed virus-like particles (VLPs) of
the major capsid (L1) protein of HPV Types 6,
11, 16, and 18


continue


Havrix ® Hepatitis A Hepatitis A virus Inactivated virus The virus (strain HM175) is propagated in Alum
(GlaxoSmithKline) MRC-5 human diploid cells. Treatment with
formalin ensures viral inactivation
Infl uenza A (H1N1) 2009 Infl uenza Infl uenza virus Inactivated Monovalent split vaccine whole cell approach None
Monovalent Vaccine (against infl uenza
Sanofi Pasteur, Inc. disease caused
by pandemic
(H1N1) 2009
virus)
IPOL ® Sanofi Pasteur Polio Poliovirus (type 1, 2 and 3) Live inactivated Inactivated at +37 °C for at least 12 days with None
1:4,000 formalin
Infanrix ® Diphtheria Corynebacterium Subunit Toxoid of diphtheria and tetanus and the Alum
(GlaxoSmithKline) diphtheriae acellular pertussis antigens (inactivated
Tetanus Clostridium tetani pertussis toxin (PT), fi lamentous
Pertussis Bordetella pertussis hemagglutinin (FHA), and pertactin)
Pediarix ® Diphtheria Corynebacterium Subunit As Infarix in combination with HBsAg and Alum
(GlaxoSmithKline) diphtheriae type 1, 2, and 3 polio viruses
Tetanus Clostridium tetani Inactivated with formaldehyde
Pertussis Bordetella pertussis
Polio Poliovirus
Hepatitis B Hepatitis B virus
Recombivax HB ® Hepatitis B Hepatitis B virus Subunit viral Derived from hepatitis B surface antigen Alum
(Merck & Co.) vaccine (HBsAg)
Zostavax ® (Merck & Co.) Herpes Herpes Zoster virus Live attenuated Oka/Merck strain of VZV
Zoster



2.2.1 Live Attenuated Vaccines
Conventional vaccines have been based on live attenuated pathogens, and contain laboratory-weakened versions of the original pathogen. The rationale for using live attenuated vaccines is that they mimic the natural infection, which results in an effective vaccination strategy. The advantage of this type of vaccine is that both a strong cellular and an antibody response are produced. Usually, long-term protection is also achieved, and a single inoculation is often sufficient. The attenuation of the microorganism results in a non-pathogenic microorganism, which still possesses all the pathogenic features as the original microorganism (Clem 2011 ).

Attenuation can be achieved via different approaches. Edward Jenner’s approach was to use a virus pathogenic in a different host but not pathogenic to humans, as he isolated pus from cows with cowpox, and this provided the basis for his smallpox vaccine (Riedel 2005 ). Naturally occurring attenuated strains can also be used, exemplified by the use of type 2 polio virus. Attenuation is also possible by applying harsh conditions on a virulent virus strain (e.g., cold adaption of influenza virus).

The Bacillus Calmette Guérin (BCG) vaccine against TB is an example of an attenuated live vaccine. The currently used vaccine strains are all descendants of the original M. bovis isolate that Calmette and Guérin passaged through many cycles. Further passages, under different laboratory conditions, have resulted in a variety of new BCG strains with phenotypic and genotypic difference.

One such strain is the 1331 strain produced at the Danish Serum Institute (WHO 2004 ). As adults with lung TB are the major source of disease transmission, BCG vaccination of children has had very limited influence on the global epidemic. Another very important limitation of BCG is the lack of effect in the two billion individuals already infected with TB, which underlines the need for the development of new TB vaccines (WHO 2004 ).

Another example of an attenuated live viral vaccine is the measles, mumps, and rubella vaccine (MMR). This vaccine has been available in the United States since 1971 (Ravanfar et al. 2009 ). Priorix ® is a marketed MMR vaccine produced by GlaxoSmithKline. The vaccine contains attenuated MMR viruses. Each of these attenuated virus strains, measles (the Schwarz strain), mumps (the RIT 4385 strain), and rubella (the Wistar RA 27/3 strain) is obtained separately by propagation in chick embryo tissue cultures (mumps and measles) or MRC5 human diploid cells (rubella) (Wellington and Goa 2003 ).



2.2.2 Inactivated Vaccines
The main advantage of killed or inactivated vaccines over attenuated vaccines is safety. Since these vaccines are based on killed/inactivated pathogens, the concerns regarding reverting back to virulence are obviated. However, this also constitutes a huge disadvantage since the lack of replication results in a fast clearance from the body leading to a decreased efficacy, as compared to the live vaccines. Killed/inactivated vaccines do, however, give rise to a more complex or greater inflammatory immune response in comparison to the newer subunit vaccines due to the fact that most of the pathogenic components are preserved.

Inactivated vaccines are used widely. An example of such a vaccine is the Hepatitis A vaccine Epaxal ® from Crucell. This vaccine is based on a hepatitis A virus (strain RG-SB) which is inactivated by formalin treatment. The inactivated vaccine is adsorbed onto a virosome formulation, which constitutes the adjuvant system (Bovier 2008 ).


2.2.3 Subunit Vaccines
Sub unit vaccines are, by definition, vaccine agents that comprise one or more components of a pathogen rather than the entire pathogen. Sub unit vaccines are composed of one or several recombinant peptides/proteins or polysaccharides normally present in the structure of the target pathogen (Dudek et al. 2010 ). In terms of safety and cost of production, these vaccines offer considerable advantages over the traditional vaccines, as these are composed of very well-defined and highly pure components. This approach results in a more appealing safety profile due to the lack of replication and the removal of material that may initiate unwanted host responses (Robinson and Amara 2005 ).

For bacterial sub unit vaccines, two main types exist. The first type is the toxoid vaccines which are generated against bacteria where toxins are the main disease causeing agents. The toxins are inactivated by converting the toxins into detoxified versions (toxoids), for instance by treatment with formaldehyde. These toxoids can then safely be used for vaccination purposes. The close resemblance of the toxoid to the toxin enables the immune system to neutralize and fi ght the natural toxins via generation of anti-toxoid antibodies. Examples of toxoid vaccines are the different vaccines against diphtheria, tetanus, and pertussis. The second major group of bacterial sub unit vaccines as based on the capsular polysaccharides of encapsulated bacteria. There are several examples of vaccines of this type, including vaccines against Streptococcus pneumoniae , Neisseria meningitidis , and Haemophilus influenzae type b (Hib). A variation of this is the conjugate vaccine, which is created by covalently attaching an antigen (often the bacterial polysaccharides) to a carrier protein, e.g., tetanus toxoid, resulting in the generation of more efficacious vaccines. Common virus subunit vaccines are the split virus vaccines where the structure of the viruses has been disrupted, resulting in a mixture of the various viral components.

Alternatively, sub unit vaccines may consist of one or more viral or bacterial proteins, or peptide fragments of these. In some cases, such antigens might be sufficiently immunogenic by themselves. This is the case for the sub unit vaccine for influenza comprising the two purified surface antigens hemagglutinin (HA) and neuraminidase (NA). These two proteins are isolated for the seasonal flu vaccine from three selected virus strains and combined in a trivalent vaccine, with or without an adjuvant. Also for the hepatitis B vaccine, the surface antigen, HBsAg, is sufficiently immunogenic, and a vaccine based on recombinant HBsAg was the first genetically engineered vaccine product produced commercially and used worldwide.

However, in many cases the highly purified sub unit antigens lack many of the intrinsic pathogenic features which render these protein-based antigens weakly immunogenic by themselves and co-administration of adjuvants is often required. The addition of adjuvants not only enables the induction of an effective immune response, but also provides the potential to modulate the immune response (Reed et al. 2009 ; O’Hagan 2001 ). The use of adjuvants can also allow for a dose-sparring effect or can reduce the number of required administrations.


2.2.3.1 Adjuvants
A vaccine adjuvant is defi ned as a component that potentiates the immune response to an antigen and/or modulates it towards a desired immune response. The term adjuvant is derived from the Latin word adjuvare , which means to help. The most commonly used adjuvants are the aluminum salts commonly, although incorrectly, referred to as alum (Chap. 3 ). The adjuvant effect of alum was discovered by Glenny in 1926, and alum has now been utilized for more than 70 years in vaccines (Glenny et al. 1926 ). For many years alum was the only adjuvant approved worldwide and it has been used in large numbers of vaccines for human use (Clements and Griffi ths 2002 ). Formulation is achieved by adsorption of antigen onto highly charged aluminum particles (Reed et al. 2009 ).

In recent years, there has been substantial progress in the discovery of new efficient adjuvants for sub unit vaccines [reviewed by (Foged 2011 )], and a handful of these have been marketed as components of approved licensed vaccines. Examples of adjuvants are emulsions, liposomes, polymeric nanoparticles, immune- stimulating complexes (ISCOMs), and VLPs, which are described in the following chapters.

Adjuvants can broadly be classified into delivery systems and immunopotentiating compounds, generally pathogen-associated molecular patterns (PAMPs) such as the toll-like receptor (TLR) ligands. The function of delivery systems is to effectively deliver the vaccine components to the target antigen-presenting cells (APCs) and thereby enhance the amount of antigen reaching the cells or tissue responsible for induction of immune responses. Delivery systems are often particulate in nature and mimic nature in terms of size and shape resulting in a delivery system with similar dimensions as a given pathogen, which is a natural target for APCs. The combination of delivery systems and immunopotentiators has great potential due to concomitant enhanced antigen delivery and potent stimulation of innate immunity [reviewed by (Reed et al. 2009 , 2013 )].

Thus adjuvants are a heterogenous group of compounds that can have many different functions, i.e., depot or targeting functions and immunostimulatory or immunomodulatory functions (Guy 2007 ). Adjuvants utilize very different mechanisms in order to potentiate an immune response: (a) depot effect; (b) up-regulation of cytokines and chemokines; (c) cellular recruitment at the site of injection; (d) increased antigen uptake and presentation to APCs; (e) activation and maturation of APCs and migration to the draining lymph nodes; and (f) activation of the inflammasome [reviewed by (Awate et al. 2013 )]. Understanding of the adjuvant mechanism of action can be utilized to develop vaccines with a very specific and tailored effect. The mechanism behind adjuvanticity is however in many cases poorly understood since immune responses to vaccines involve a very complex cascade of events and the isolated effect of an adjuvant can be very difficult to dissect.

The antigen can be associated to a delivery system by surface adsorption or encapsulation, depending on the mode of preparation. In this sense, delivery systems provide the potential to control antigen kinetics and dynamics. This is done (a) by stabilizing as well as protecting the antigen from degradation; (b) by inhibiting/ delaying clearance of the antigen from the injection site; (c) targeting and also carrying the antigen to the APCs; (d) prolonging the time of exposure of antigen to the immune cells; (e) enhancing the antigen uptake in the APCs; and (f) controlling the antigen release and intracellular traffi cking (reviewed by Foged 2011 ; O’Hagan and De Gregorio 2009 ).

Immunopotentiators function via direct activation of the innate immune system by interacting with the APCs through pattern recognition receptors (PRRs) (O’Hagan and Valiante 2003 ). Examples of such immunopotentiators are ligands of innate immune receptors, the TLRs, NOD-like receptors (NLRs), C-type lectin receptors (CLRs), and RIGI-like receptors (RLRs) [reviewed by (Reed et al. 2013 ; Foged 2011 ; Guy 2007 )]. A wide variety of PAMPs are recognized through TLRs, examples thereof are lipopolysaccharide (LPS) and its derivatives which are recognized through TLR4, peptidoglycans from Gram-positive bacteria and lipopeptides are recognized through TLR2, RNA is recognized through TLR3, bacterial fl agellin through TLR5, single- stranded RNA and imidazoquinolines signal through TLR7 and TLR8, and unmethylated CpG motifs in bacterial DNA are recognized through TLR9 (Gay and Gangloff 2007 ; Medzhitov 2001 ).

A growing body of preclinical and clinical data demonstrates that TLR agonists are potent vaccine adjuvants and provide the opportunity for tailoring and modulating the immune response against a vaccine by inducing distinct cytokine profiles (Duthie et al. 2011 ). Monophosphoryl lipid A (MPL) is the most studied TLR agonist for vaccination purposes. MPL is derived from LPS which is found in the cell wall of Gram-negative bacteria (Casella and Mitchell 2008 ). The adjuvant formulation AS04 from GlaxoSmithKline is based on MPL adsorbed to alum (Garcon 2010 ) and is approved for the hepatitis B vaccine Fendrix™ (Garcon et al. 2007 ) and the HPV vaccine Cervarix™ in combination with VLPs (Schwarz 2009 ; Romanowski et al. 2009 ). In addition new and synthetic TLR agonists are being developed and the availability of such immunopotentiators has expanded.

Hence rational development and formulation of adjuvant systems can result in a wide variety of ways to modulate the immune response in a desired direction.

The non-TLRs are not as well described as the TLRs and include intracellular innate receptors such as the RLRs, the soluble NLRs, and CLRs. The surface- expressed CLRs include the mannose receptor and DC-SIGN that are able to bind a wide range of viruses, bacteria, and fungi through recognition of sugar moieties (Guy 2007 ).

Adjuvant systems are defi ned as functional excipients and are in that sense components of a specific vaccine. Table 2.3 lists adjuvant delivery systems used in vaccines approved for human use. The aluminum salts are described further in Chap. 3 of this book, the oil-in-water emulsions MF59 and AS03 are described in Chap. 4 , and VLPs are discussed in Chap. 9 .

In order to achieve the optimal immunological effect, an adjuvant appropriate for the formulation must be considered. The choice of formulation is in turn dependent upon the choice of antigenic components, the type of immune response that is needed, the optimal/desired route of administration, any potential adverse effects, and the stability of the vaccine. These factors must be considered in the early phases of development. Also the adjuvant must be chemically as well as physically stable in order to face the quality control criteria (see Chap. 19 ) which ensures reproducible manufacturing as well as activity (Reed et al. 2009 ).

The inclusion of adjuvants in vaccine formulations should be justified. Efficacy, safety, and tolerability are the most important factors for vaccine development. The use of adjuvants should therefore be considered in relation to the target population and should be selected based on a risk/benefit ratio. For example, a higher risk is more acceptable for cancer patients than for healthy children.


2.2.4 DNA Vaccines
DNA vaccines represent a new generation of vaccines that are attractive due to their simplicity in addition to several other advantages they have over conventional vaccines. The principle underlying DNA vaccination is to induce immunity by transiently transfecting host cells with plasmid DNA (pDNA) encoding antigen, as opposed to injecting antigen in the form of a peptide or protein. Upon DNA vaccination, host cells produce the protein (antigen) encoded by the DNA and immunity against this particular protein is subsequently induced (Bins et al. 2013 ; Senovilla et al. 2013 ). The great advantages associated with DNA vaccines are that they can be manufactured relatively easily at low costs, and both humoral and cellular immune responses can be elicited. In addition, pDNA is fairly stable at room temperature (Bins et al. 2013 ), which renders the normally required cold chain redundant for DNA vaccine storage. This is certainly of high importance for the effectiveness of vaccine programs in developing countries.

As yet no DNA vaccines have been approved for human use. Several clinical trials are being conducted at this point in time for different cancers and HIVAIDS. Some DNA vaccines are approved/registered for veterinary use (Bins et al. 2013 ; Senovilla et al. 2013 ).



2.2.5 Dendritic Cell-Based Vaccines
Another type of vaccination strategy is based on dendritic cells (DCs). The function of these cells is to acquire, process and present antigens to T-cells, and provide the stimulatory signals and cytokines required to induce T-cell proliferation and differentiation into effector cells (Chap. 1 ). Therefore, a much-studied vaccination strategy is to load in vitro-generated DCs with antigens and infuse them into a patient so as to elicit T-cell-mediated responses, particularly in the context of cancer where DC function in vivo is often blunted or subverted by factors released by the tumor (Chap. 13 ). While preclinical studies have repeatedly shown that DC-based vaccines can delay or prevent tumor progression, human clinical trials have been disappointing in comparison, offering only marginal benefit for patients. There is therefore still a need to improve the stimulatory capacity of the injected cells, and strategies for how to achieve this are discussed further in Chap. 13 .


Delivery system Adjuvant name Vaccine Disease target Company Reference
Mineral salt Aluminum Vaccine Various, Clements and Griffi ths ( 2002 )
hydroxide/phosphate e.g., Diphtheria,
tetanus, hepatitis
Oil-in- water emulsion MF59 Fluad ® Infl uenza Novartis Schultze et al. ( 2008 ) and Podda ( 2001 )
Focetria® Banzhoff et al. (2 009 ) and Gasparini et al. (2 010 )
Afl unov ® Galli et al. ( 2009a ) and Galli et al. ( 2009b )
Oil-in- water emulsion AS03 Arepanrix ® Infl uenza GlaxoSmith Roman et al. ( 2010 )
Prepandrix ® Klin Walker and Faust ( 2010 )
Pandemrix ®
Water-in- oil emulsion Montanide CimaVax Cancer Bioven Rodriguez et al. ( 2010 )
EGT™
Virosomes Exapal ® Hepatitis A Crucell Bovier ( 2008 )
Infl exal V ® Infl uenza Crucell Gluck and Metcalfe ( 2002 )
Invivac™ Infl uenza Solvay de Bruijn et al. ( 2006 )
VLPs adsorbed onto alum Gardasil ® HPV Merck Schiller et al. ( 2008 )
MPL adsorbed onto alum AS04 Fendrix ® Hepatitis B GlaxoSmith Garcon et al. ( 2007 )
Kline
VPL + MPL adsorbed onto Cervarix ® HPV GlaxoSmith Schwarz ( 2009 )
alum Kline

M PL monophosphoryl lipid A, V LP virus-like particle



2.3 Pharmaceutical and Delivery Challenges for the Development of Sub unit Vaccines
Research in the fi eld of modern vaccinology is to a large extent conducted in the absence of knowledge of how the physicochemical properties of the sub unit formulations impact the efficacy, safety, and mechanism of action (Mortellaro and Ricciardi-Castagnoli 2011 ). In order to move towards a more rational process regarding vaccine development it is of crucial importance to increase understanding of vaccine formulation, which is a great challenge since vaccines are often very complex systems (Reed et al. 2009 ). An in-depth understanding of the physicochemical properties and what effect production and biological processes impose on safety and efficacy is desirable during development of sub unit vaccines, also from a stability and quality control point of view. Therefore, there are a substantial number of pharmaceutical challenges associated with the sub unit vaccine development process. With these complex systems a tremendous amount of work on development, formulation, and characterization is needed. Also the regulatory challenges facing scientists who research and develop sub unit vaccines are of great importance for the successful development of sub unit vaccines. The pharmaceutical analysis and quality control of vaccines are described further in Chaps. 19 – 21 of this book.

A crucial aspect in addressing the challenges in vaccine development is vaccine delivery, which encompasses (a) administration of the vaccine formulation to specific sites of the body and (b) delivery of the antigen to, and activation of, relevant cells of the immune system. Administration of vaccine formulations to specific sites of the body can be achieved by various routes, and the most commonly used routes have been intramuscular (i.m.) and subcutaneous (s.c.) injection. During the past decades, much effort has been devoted to exploring the use of minimally invasive or noninvasive administration routes, such as nasal delivery, pulmonary delivery, transcutaneous delivery, oral delivery, and sublingual/buccal delivery. Such alternative routes of administration might allow for easier and more convenient administration, e.g., needle-free approaches, and might eventually result in increased vaccine coverage by increasing the willingness of the public to be vaccinated. In addition, the use of alternative administration routes might affect the quality of the immune response.
One example is mucosal vaccination. Most pathogens access the body through the mucosal membranes. Therefore, effective vaccines that protect at these sites are much needed. However, despite early success with the live attenuated oral polio vaccine, only a few new mucosal vaccines have been approved for human use. This is partly due to problems with developing safe and effective mucosal adjuvants.

Each of these immunization routes requires specially designed formulations (e.g., suspensions, emulsions, powders, tablets) and specially designed delivery devices (such as microneedles, nasal sprayers, and pulmonary inhalers). To license a product for vaccination applying alternative administration routes, the combination of formulation and device should be licensed as a whole. For this reason, formulation development and development of a suitable device should go hand in hand. In Chaps. 14 – 18 , different administration routes are discussed together with formulations and devices used specifically for these routes.

Finally, the development of stable vaccine formulations is important to consider, in particular the development of thermostable vaccines that can be distributed independently of the expensive cold chain are highly in demand for the developing countries. Processes for drying of vaccines such as spray drying, spray freeze drying, and supercritical fluid technology are further described for pulmonary formulations in Chap. 16 .



2.4 Conclusions
Prophylactic vaccination is the medical intervention with by far the largest impact on public health and has greatly reduced the incidences of bacterial and viral infections. Despite this the field of vaccinology faces a number of challenges, and there is still an unmet medical need for new vaccines due to the existence of a number of infectious diseases for which no effective vaccine is available (e.g., HIV-AIDS, malaria), or for which existing vaccines provide insufficient immunity (e.g., TB) or
are unaffordable for those most in need (e.g., Pneumococcal disease). Conventional vaccines include the live, attenuated, or inactivated whole organism vaccines. Novel vaccine development strategies aim towards more safe, efficient, and stable vaccines in the future. New generation vaccines are usually of the sub unit vaccine type, which are based on highly purified recombinant or synthetic antigens. A number of adjuvant technologies are used to enhance efficacy and there are efforts ongoing to explore the usage of noninvasive administration routes. This poses special demands in terms of formulation development and device technology for optimizing the delivery of antigens and immunopotentiators to the immune system.



References

Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114
Banzhoff A, Gasparini R, Laghi-Pasini F, Staniscia T, Durando P, Montomoli E, Capecchi PL, Di
Giovanni P, Sticchi L, Gentile C, Hilbert A, Brauer V, Tilman S, Podda A (2009) MF59-
adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses
in non-elderly and elderly adults. PLoS One 4:e4384
Bins AD, Van Den Berg JH, Oosterhuis K, Haanen JB (2013) Recent advances towards the clinical
application of DNA vaccines. Neth J Med 71:109–117
Bloom DE, Canning D, Weston M (2005) The value of vaccination. World Economics 6:15
Bovier PA (2008) Recent advances with a virosomal hepatitis A vaccine. Expert Opin Biol Ther
8:1177–1185
Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a
safe and effective vaccine adjuvant. Cell Mol Life Sci 65:3231–3240
Clem AS (2011) Fundamentals of vaccine immunology. J Glob Infect Dis 3:73–78
Clements CJ, Griffi ths E (2002) The global impact of vaccines containing aluminium adjuvants.
Vaccine 20(Suppl 3):S24–S33
De Bruijn IA, Nauta J, Gerez L, Palache AM (2006) The virosomal infl uenza vaccine Invivac:
immunogenicity and tolerability compared to an adjuvanted infl uenza vaccine (Fluad in elderly
subjects). Vaccine 24:6629–6631
Dudek NL, Perlmutter P, Aguilar MI, Croft NP, Purcell AW (2010) Epitope discovery and their use
in peptide based vaccines. Curr Pharm Des 16:3149–3157
Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defi ned TLR ligands as adjuvants within
human vaccines. Immunol Rev 239:178–196
Ehreth J (2003) The global value of vaccination. Vaccine 21:596–600
Foged C (2011) Subunit vaccines of the future: the need for safe, customized and optimized particulate
delivery systems. Ther Deliv 2:1057–1077
Galli G, Hancock K, Hoschler K, Devos J, Praus M, Bardelli M, Malzone C, Castellino F, Gentile
C, McNally T, Del Giudice G, Banzhoff A, Brauer V, Montomoli E, Zambon M, Katz J,
Nicholson K, Stephenson I (2009a) Fast rise of broadly cross-reactive antibodies after boosting
long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc
Natl Acad Sci U S A 106:7962–7967
Galli G, Medini D, Borgogni E, Zedda L, Bardelli M, Malzone C, Nuti S, Tavarini S, Sammicheli
C, Hilbert AK, Brauer V, Banzhoff A, Rappuoli R, Del Giudice G, Castellino F (2009b)
Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence
of protective antibody levels. Proc Natl Acad Sci U S A 106:3877–3882
Garcon N (2010) Preclinical development of AS04. Methods Mol Biol 626:15–27
Garcon N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline Adjuvant Systems in vaccines:
concepts, achievements and perspectives. Expert Rev Vaccines 6:723–739
Gasparini R, Schioppa F, Lattanzi M, Barone M, Casula D, Pellegrini M, Veitch K, Gaitatzis N
(2010) Impact of prior or concomitant seasonal infl uenza vaccination on MF59-adjuvanted
H1N1v vaccine (Focetria) in adult and elderly subjects. Int J Clin Pract 64:432–438
Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev
Biochem 76:141–165
Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological notes. XVII–XXIV. J
Pathol Bacteriol 29:31–40
Gluck R, Metcalfe IC (2002) New technology platforms in the development of vaccines for the
future. Vaccine 20(Suppl 5):B10–B16
Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol
5:505–517
Huang DB, Wu JJ, Tyring SK (2004) A review of licensed viral vaccines, some of their safety
concerns, and the advances in the development of investigational viral vaccines. J Infect
49:179–209
Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145
Mortellaro A, Ricciardi-Castagnoli P (2011) From vaccine practice to vaccine science: the contribution
of human immunology to the prevention of infectious disease. Immunol Cell Biol
89:332–339
O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant—‘the long and
winding road’. Drug Discov Today 14:541–551
O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants.
Nat Rev Drug Discov 2:727–735
O’Hagan DT (2001) Recent developments in vaccine delivery systems. Curr Drug Targets Infect
Disord 1:273–286
Podda A (2001) The adjuvanted infl uenza vaccines with novel adjuvants: experience with the
MF59-adjuvanted vaccine. Vaccine 19:2673–2680
Rappuoli R (2007) Bridging the knowledge gaps in vaccine design. Nat Biotechnol 25:1361–1366
Ravanfar P, Satyaprakash A, Creed R, Mendoza N (2009) Existing antiviral vaccines. Dermatol
Ther 22:110–128
Reed SG, Bertholet S, Coler RN, Friede M (2009) New horizons in adjuvants for vaccine development.
Trends Immunol 30:23–32
Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med
19:1597–1608
Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent)
18:21–25
Robinson HL, Amara RR (2005) T cell vaccines for microbial infections. Nat Med 11:S25–S32
Rodriguez PC, Rodriguez G, Gonzalez G, Lage A (2010) Clinical development and perspectives
of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev
12:17–23
Roman F, Vaman T, Gerlach B, Markendorf A, Gillard P, Devaster JM (2010) Immunogenicity and
safety in adults of one dose of infl uenza A H1N1v 2009 vaccine formulated with and without
AS03A-adjuvant: preliminary report of an observer-blind, randomised trial. Vaccine
28:1740–1745
Romanowski B, De Borba PC, Naud PS, Roteli-Martins CM, De Carvalho NS, Teixeira JC, Aoki
F, Ramjattan B, Shier RM, Somani R, Barbier S, Blatter MM, Chambers C, Ferris D, Gall SA,
Guerra FA, Harper DM, Hedrick JA, Henry DC, Korn AP, Kroll R, Moscicki AB, Rosenfeld
WD, Sullivan BJ, Thoming CS, Tyring SK, Wheeler CM, Dubin G, Schuind A, Zahaf T,
Greenacre M, Sgriobhadair A (2009) Sustained effi cacy and immunogenicity of the human
papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebocontrolled
trial up to 6.4 years. Lancet 374:1975–1985
Schiller JT, Castellsague X, Villa LL, Hildesheim A (2008) An update of prophylactic human
papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 26(Suppl 10):
K53–K61
Schultze V, D’agosto V, Wack A, Novicki D, Zorn J, Hennig R (2008) Safety of MF59 adjuvant.
Vaccine 26:3209–3222
Schwarz TF (2009) Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical
cancer vaccine, Cervarix. Adv Ther 26:983–998
Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G,
Galluzzi L (2013) Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2:e23803
Walker WT, Faust SN (2010) Monovalent inactivated split-virion AS03-adjuvanted pandemic
infl uenza A (H1N1) vaccine. Expert Rev Vaccines 9:1385–1398
Wellington K, Goa KL (2003) Measles, mumps, rubella vaccine (Priorix; GSK-MMR): a review
of its use in the prevention of measles, mumps and rubella. Drugs 63:2107–2126
WHO (2004) BCG vaccine. WHO position paper. Wkly Epidemiol Rec 79:27–38
WHO (2012) Summary of WHO position papers—recommendation for routine immunization in:
immunization, vaccines and biologicals. World Health Organization, Geneva
WHO Fact Sheet 104. (2012). http://www.who.int/mediacentre/factsheets/fs104/en/




Health-Related Quality of Life of Patients with HPV-Related Cancers in Indonesia Didik Setiawan, PhD1,2,*, Arrum Dusafitri, BPharm2, Gi...